Question

Determine the speed of a body of mass that orbits a spherical star from infinity, around...

Determine the speed of a body of mass that orbits a spherical star from infinity,
around the star and out to infinity at the closest possible approach, as measured by a
stationary observer at that point.

Homework Answers

Answer #1

Let the distance of closest approach be R.

We will be using the Schwarzschild solution for Einstein's field equations.

The Schwarzschild components of four velocity are

The speed V measured by a stationary observer is given by

The energy can be obtained from the four momentum and four velocity of the observer and is given by

Thus,

Now, at large value of r, where b is the impact parameter.

Where e is the energy per unit mass.

By applying the normalization condition at the turning point,

Substituting in this equation and plugging into the equation for V,

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Two planets P1 and P2 orbit around a star S in circular orbits with speeds v1...
Two planets P1 and P2 orbit around a star S in circular orbits with speeds v1 = 43.8 km/s, and v2 = 58.6 km/s. A) If the period of the first planet P1 is 780 years what is the mass, in kg, of the star it orbits around?B) Determine the orbital period, in years, of P2. Please show each step of the process
A binary star system consists of two equal mass stars that revolve in circular orbits about...
A binary star system consists of two equal mass stars that revolve in circular orbits about their center of mass. The period of the motion, T = 26.4 days, and the orbital speed v = 220 km/s of the stars can be measured from telescopic observations. What is the mass (kg) of each star? Best answer goes to the correct answer with steps thank you
Planet Yoyo is discovered to orbit around a star with 5 times the mass of our...
Planet Yoyo is discovered to orbit around a star with 5 times the mass of our Sun. It orbits at a distance of 7 AU in a circular orbit. The orbital period is measured to be 8 years. Find: 1) The mass of the planet. Give the answer in both solar masses and kilograms 2) The mass of the star in kilograms 3) The distance of the planets orbit in meters. 4) The force due to gravity between the planet...
A planet orbits a star of mass 8.72×10^30 kg with a period of 5.72 years. It...
A planet orbits a star of mass 8.72×10^30 kg with a period of 5.72 years. It is also known that the planet has an eccentricity of 0.664. Give Answers in Meters 1. What is the semi-major axis of the planet's orbit? 2. What is the average velocity of the planet in its orbit? 3. What is the distance of the closest approach to its parent start (perihelion)? 4. What is the farthest distance the planet travels away from its parent...
One star (BZ2) is observed to be moving in an edge-on circle around the central mass....
One star (BZ2) is observed to be moving in an edge-on circle around the central mass. From the Doppler effect, its speed is measured to be 89000 km/s. And when passing in front of the central mass, it has an apparent side-ways speed of 3 arcsec per (Earth) year. Use these numbers to calculate the distance from the planet to the centre of the central mass (in parsecs):
A new extrasolar planet (outside our solar system) has been discovered. This planet orbits a star...
A new extrasolar planet (outside our solar system) has been discovered. This planet orbits a star of mass 1.05×1031 kg with a period of 6.52 years . It is also known that the planet has an eccentricity of 0.674. Part A: What is the average velocity of the planet in its orbit? in m/s Part B: What is the distance of closest approach to its parent start (perihelion)? d.perihelion in m Part C: What is the farthest distance the planet...
A satellite of mass m is in an elliptical orbit around the Earth, which has mass...
A satellite of mass m is in an elliptical orbit around the Earth, which has mass Me and radius Re. The orbit varies from closest approach of distance a at point A to maximum distance of b from the center of the Earth at point B. At point A, the speed of the satellite is v0. Assume that the gravitational potential energy Ug = 0 when masses are an infinite distance apart. Express your answers in terms of some or...
A spherical shell of mass M is released from rest and rolls without slipping down a...
A spherical shell of mass M is released from rest and rolls without slipping down a 40.00 sloped hill. Determine the center of mass speed of the object when the ball has rolled 6.00 meters along the hill. Ignore any thickness of the shell. Please show work and possible thoughts
Show all calculations and formulas used. The closest star to earth is 4.253 light years away....
Show all calculations and formulas used. The closest star to earth is 4.253 light years away. How far is that in miles? The fastest space probe ever designed has a speed of about 58,000 km/h. How long would it take it to cross the length of the milky way galaxy? If the parallax angle of a star is 0.000075% then how far away is that star? What is the relative brightness of the Sun as seen from Saturn as compared...
Neutron stars are extremely dense objects formed from the remnants of supernova explosions. Many rotate very...
Neutron stars are extremely dense objects formed from the remnants of supernova explosions. Many rotate very rapidly. Suppose the mass of a certain spherical neutron star is twice the mass of the Sun and its radius is 6.0 km. Determine the greatest possible angular speed it can have so that the matter at the surface of the star on its equator is just held in orbit by the gravitational force.