Question

A small child of mass mc is sitting on the edge of a large merry-go-round which...

A small child of mass mc is sitting on the edge of a large merry-go-round which is initially at rest. For simplicity, assume the merry-go-round is a uniform disk of mass mm and radius R. An ice-cream truck drives by and in a moment of benevolence, the driver hurls a huge scoop of vanilla ice cream at the child. The scoop has mass ms and is traveling parallel to the ground and tangent to the merry-go-round at a speed of vs i just before the child catches it in its mouth. This incident causes the child and merry-go-round to rotate (you can assume that the child is "fixed" to the merry-go-round). A time tf  after the child catches the ice-cream everything has slowly come back to rest due to friction between the axle and the merry-go-round. Express your final answers to the questions below in terms of any of mc mm R ms vs i and tf .

1. Find an expression for the angular speed of the child just after he catches the ice-cream in his mouth.

2. Find an expression for the magnitude of the average torque from the friction between the axle and the merry-go-round from just after the child catches the ice cream until everything has just come back to rest.

3. Taking your system to be the child+merry-go-round+ice-cream, did the linear momentum of the system change during the "collision" of the ice-cream with the child's mouth? If so, explain why.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A child with a mass of 50 kg is standing at the edge of a merry-go-round...
A child with a mass of 50 kg is standing at the edge of a merry-go-round which has a radius of 3.50 m and a mass of 700 kg. The merry-go-around is initially at rest. The child throws a 1.20 kg stone perpendicular to the merry-go-round's radius at a speed of 6.0 m/s. What is the resulting angular speed of the entire system? Friction is negligible and the merry-go-round is a uniform disk. The child is classified as a point...
In the figure here, a 31 kg child stands on the edge of a stationary merry-go-round...
In the figure here, a 31 kg child stands on the edge of a stationary merry-go-round of radius 2.4 m. The rotational inertia of the merry-go-round about its rotation axis is 120 kg·m2. The child catches a ball of mass 1.4 kg thrown by a friend. Just before the ball is caught, it has a horizontal velocity of magnitude 9 m/s, at angle φ = 49 ˚ with a line tangent to the outer edge of the merry-go-round, as shown....
A 40 kg child (point mass) rides on the outer edge of a merry-go-round, which is...
A 40 kg child (point mass) rides on the outer edge of a merry-go-round, which is a large disk of mass 150 kg and radius 1.5 m. The merry-go-round spins with an angular velocity of 12 rpm. What is the merry-go-round’s angular velocity in radians per second (rad/s)? What is the total rotational inertia (moment of inertia) of the child and merry-go-round together? What is the rotational kinetic energy (in joules) of the merry-go-round and child together? What magnitude of...
A child of mass m=15kg stands on a merry-go-round. The radius of the merry-go-round is R=2m...
A child of mass m=15kg stands on a merry-go-round. The radius of the merry-go-round is R=2m and the mass is M=75kg. The merry-go-round is considered to be a solid disk. The merry-go round initially at rest and the child stands near the edge. What will the angular velocity of the merry-go-round be if the child jumps off a.) In the radial direction with a velocity of +4m/s? b.) perpindicular to the radial direction with a velocity of +4m/s? c.) At...
A playground merry-go-round is a large disk of mass 10.0 kg and radius 2.00 m. The...
A playground merry-go-round is a large disk of mass 10.0 kg and radius 2.00 m. The merry-go-round is initially at rest. A physics teacher pushes on the rim for 24.0 s to accelerate it with constant angular acceleration until the merry-go-round has completed a total of 9.00 full revolutions. a. What is the final angular velocity after 24.0 s? b. How much total work did the teacher do on the merry-go-round? (You may assume the axle for the merry-go-round is...
A playground merry-go-round has radius 2.40m and moment of inertia 2100kg?m2 about a vertical axle through...
A playground merry-go-round has radius 2.40m and moment of inertia 2100kg?m2 about a vertical axle through its center, and it turns with negligible friction. A child applies an 22.5N force tangentially to the edge of the merry-go-round for 19.0s . If the merry-go-round is initially at rest, what is its angular speed after this 19.0s interval? How much work did the child do on the merry-go-round? What is the average power supplied by the child?
A child of mass 60 kg sits at the center of a playground merry-go-round which is...
A child of mass 60 kg sits at the center of a playground merry-go-round which is spinning at 1.5 rad/s. The moment of inertia and radius of the merry-go-round are 150 kg×m2 and 1.2 m respectively. How much rotational kinetic energy does the system lose as the child moves to the edge of the merry-go-round? (Treat the child as a point mass.)
A 20-kg child running at 2.0 m/s jumps onto a playground merry-go-round that has inertia 180...
A 20-kg child running at 2.0 m/s jumps onto a playground merry-go-round that has inertia 180 kg and radius 1.6 m. She is moving tangent to the platform when she jumps, and she lands right on the edge. Ignore any friction in the axle about which the platform rotates. What is the rotational speed of the merry-go-round and the child if the merry-go-round started from rest? Express your answer with the appropriate units.
A playground merry-go-round has a radius of 1.5 m and mass of 200 kg, and turns...
A playground merry-go-round has a radius of 1.5 m and mass of 200 kg, and turns with negligible friction about a vertical axle through its center. A child applies a constant force that produces a torque of 50 N·m to the merry-go-round. Its moment of inertia is given by I = ½MR2. The next four questions have to do with this rotating merry-go-round. Determine the angular acceleration of the merry-go-round in rad/s2. a. 0.047 rad/s2 b. 0.222 rad/s2 c. 0.965...
Billy (mass = 50 kg) stands on the edge of a merry-go-round, which is a disc...
Billy (mass = 50 kg) stands on the edge of a merry-go-round, which is a disc with a radius R = 2.0 m and a mass M = 100 kg. Annie begins spinning the merry-go-round (and Billy) by pushing on it with a force of 20 N tangent to its edge for 20 s. (a) What are (i) the torque Annie imparts on the merry-go-round (with Billy on it) and (ii) the resulting angular acceleration during the 20 second interval?...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT