Question

Two in-phase loudspeakers are 3.0 m apart. They emit sound with a frequency of 950Hz. A...

Two in-phase loudspeakers are 3.0 m apart. They emit sound with a frequency of 950Hz. A microphone is placed half-way between the speakers and then moved along the line joining the two speakers until the first point of destructive interference is found. At what distance from that midpoint is that first point? The speed of sound in air is 343 m/s.

A) 0.09 m

B) 0.18 m

C) 0.24m

D) 0.36m

E) There is no point in that line where destructive interference occurs.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Two loudspeakers are placed 3.00 m apart, as shown in the figure (Figure 1). They emit...
Two loudspeakers are placed 3.00 m apart, as shown in the figure (Figure 1). They emit 548 Hz sounds, in phase. A microphone is placed 3.20 m distant from a point midway between the two speakers, where an intensity maximum is recorded. Two loudspeakers are placed 3.00 m apart, as shown in the figure (Figure 1). They emit 548 Hz sounds, in phase. A microphone is placed 3.20 m distant from a point midway between the two speakers, where an...
Two loudspeakers are in a room where the speed of sound is 343 m/s. They emit...
Two loudspeakers are in a room where the speed of sound is 343 m/s. They emit 531 Hz sound waves along the x-axis. If the speakers are in phase, what is the smallest distance between the speakers for which the interference of the sound waves is perfectly destructive (in m)?
Two loudspeakers emit coherent in phase sound waves with at a frequency of 68.8 Hz. The...
Two loudspeakers emit coherent in phase sound waves with at a frequency of 68.8 Hz. The speed of sound is 344.0 m/s. Point q is vertically located 2.0 m from the bottom speaker and 5.0 m from the top speaker. At point q, is there maximum constructive interference, complete destructive interference, or neither?? Explain your answer.
Two loudspeakers, 1.4 m apart, emit sound waves with the same frequency along the positive x-axis....
Two loudspeakers, 1.4 m apart, emit sound waves with the same frequency along the positive x-axis. Victor, standing on the axis to the right of the speakers, hears no sound. As the frequency is slowly tripled, Victor hears the sound go through the sequence loud-soft-loud-soft-loud before becoming quiet again. What was the original sound frequency? Assume room temperature of 20∘C.
Two loudspeakers are 1.50 m apart. A person stands 3.00 m from one speaker and 3.60...
Two loudspeakers are 1.50 m apart. A person stands 3.00 m from one speaker and 3.60 m from the other. a) What is the lowest frequency at which destructive interference will occur at this point if the speakers are in phase? b) Calculate two other frequencies that also result in destructive interference at this point (give the next two highest). Let T = 20 degrees Celsius.
Two identical loudspeakers 2.20 m apart are emitting sound waves into a room where the speed...
Two identical loudspeakers 2.20 m apart are emitting sound waves into a room where the speed of sound is 340 m/s. Abby is standing 4.00 m in front of one of the speakers, perpendicular to the line joining the speakers, and hears a maximum in the intensity of the sound. What is the lowest possible frequency of sound for which this is possible?
Two out of phase loudspeakers are some distance apart. A person stands 5.30 m from one...
Two out of phase loudspeakers are some distance apart. A person stands 5.30 m from one speaker and 3.10 m from the other. What is the third lowest frequency at which destructive interference will occur at this point? The speed of sound in air is 339 m/s. (answer in Hz)
Two loudspeakers sit next to each other on a line in a 10◦C room.They both emit...
Two loudspeakers sit next to each other on a line in a 10◦C room.They both emit a 660 Hz sound 1. If the speakers have the same phase constant, what is the smallest distance between the speakers for which the interference of thesound waves is perfectly constructive? 2. If the speakers have phase constant difference equal to π, what isthe smallest distance between the speakers for which the interference of the sound waves is perfectly constructive? 3. If the speakers...
Two speakers that are 15m apart produce in phase sound waves of frequency 250Hz in a...
Two speakers that are 15m apart produce in phase sound waves of frequency 250Hz in a room where the speed of sound is 340m/s. A woman starts out at the midpoint between the two speakers . The room's walls and ceiling are covered with absorbers to eliminate reflections, and she listens with only one ear for best precision. (a) What does she hear: constructive or destructive interference? (b) she now walks slowly toward one of the speakers. How far from...
9. Two out of phase loudspeakers are some distance apart. A person stands 5.50 m from...
9. Two out of phase loudspeakers are some distance apart. A person stands 5.50 m from one speaker and 3.70 m from the other. What is the lowest acceptable frequency at which the person will hear destructive interference? The speed of sound in air is 346 m/s.