Question

The 10-kg wheel has a radius of gyration about its center O of kO = 300...

The 10-kg wheel has a radius of gyration about its center O of kO = 300 mm. When it is subjected to a couple moment of M = 50 N⋅m, it rolls without slipping.

Determine the angular velocity of the wheel after its center O has traveled through a distance of sO = 20 mm, starting from rest.

Express your answer to three significant figures and include the appropriate units.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Q1) Mass of wheel A is 4 kg and is fitted on the arm AO which...
Q1) Mass of wheel A is 4 kg and is fitted on the arm AO which has a mass of 3kg. The mass center of the arm is G. Radius of gyration of the arm about O is 0.35 m. The assembly is released from rest in the horizontal position and the wheel A rolls without slipping. a) Find the velocity of the center of wheel A when it reaches A’. Clearly state any assumptions used. b) If the wheel...
A wheel of radius R rolls to the right with an angular velocity w. a) write...
A wheel of radius R rolls to the right with an angular velocity w. a) write the parametric equations that express the movement of a spot on the wheel that is a distance r<R from the center. Assume the point is at its maximum height at time t=0. b) suppose the wheel is pushed up a ramp that makes an angle X with the horizontal. Because it is being pushed it maintains its angular velocity w. Write the parametric equations...
A wheel with a weight of 393 N comes off a moving truck and rolls without...
A wheel with a weight of 393 N comes off a moving truck and rolls without slipping along a highway. At the bottom of a hill it is rotating at an angular velocity of 22.3 rad/s . The radius of the wheel is 0.628 m and its moment of inertia about its rotation axis is 0.800 MR2. Friction does work on the wheel as it rolls up the hill to a stop, at a height of habove the bottom of...
A wheel with a weight of 396 N comes off a moving truck and rolls without...
A wheel with a weight of 396 N comes off a moving truck and rolls without slipping along a highway. At the bottom of a hill it is rotating at an angular velocity of 24.2 rad/s . The radius of the wheel is 0.597 m and its moment of inertia about its rotation axis is 0.800 MR2. Friction does work on the wheel as it rolls up the hill to a stop, at a height of h above the bottom...
A clutch plate initial consists of wheel A rotating about its body axis through the center...
A clutch plate initial consists of wheel A rotating about its body axis through the center of the wheel. Wheel B is initially at rest. Wheel A and B are then brought together so that they may be considered a single composite wheel turning with the same angular velocity. This causes the rotation to slow. We wish to find the final angular velocity given the following conditions: Mass of wheel A is 10 kg. Its radius is 3 meters. The...
A wheel with a weight of 395 N comes off a moving truck and rolls without...
A wheel with a weight of 395 N comes off a moving truck and rolls without slipping along a highway. At the bottom of a hill it is rotating at an angular velocity of 26.1 rad/s . The radius of the wheel is 0.651 m and its moment of inertia about its rotation axis is 0.800 MR2. Friction does work on the wheel as it rolls up the hill to a stop, at a height of h above the bottom...
A wheel with a weight of 387 N comes off a moving truck and rolls without...
A wheel with a weight of 387 N comes off a moving truck and rolls without slipping along a highway. At the bottom of a hill it is rotating at an angular velocity of 24.7 rad/s . The radius of the wheel is 0.592 m and its moment of inertia about its rotation axis is 0.800 MR2. Friction does work on the wheel as it rolls up the hill to a stop, at a height of h above the bottom...
A wheel with a weight of 386 N comes off a moving truck and rolls without...
A wheel with a weight of 386 N comes off a moving truck and rolls without slipping along a highway. At the bottom of a hill it is rotating at an angular velocity of 26.0 rad/s . The radius of the wheel is 0.650 m and its moment of inertia about its rotation axis is 0.800 MR2. Friction does work on the wheel as it rolls up the hill to a stop, at a height of h above the bottom...
In the figure below, a solid cylinder of radius 14 cm and mass 17 kg starts...
In the figure below, a solid cylinder of radius 14 cm and mass 17 kg starts from rest and rolls without slipping a distance L = 6.0 m down a roof that is inclined at angle θ = 30°. (a) What is the angular speed of the cylinder about its center as it leaves the roof?
A wheel of radius R is rolling without slipping along a flat surface. The center of...
A wheel of radius R is rolling without slipping along a flat surface. The center of the wheel is moving with the constant horizontal velocity v. a) Show that for the wheel not to slip, the angular velocity of the wheel must be ω = v/R. b) What is the velocity of a point on the wheel that is in contact with the ground (Measured in a coordinate system on the ground). c) What is the velocity of a point...