Question

A 1.5 kg box moves back and forth on a horizontal frictionless surface between two different...

A 1.5 kg box moves back and forth on a horizontal frictionless surface between two different springs as shown. The box is initially pressed against the stronger spring compressing it 4.0 cm, and then is released from rest. (a) By how much will the box compress the weaker spring? (b) What is the maximum speed the box will reach?

Homework Answers

Answer #1

let k1,k2 are the spring constants of the two springs

then potential energy of the spring with comprression or elangation is 1/2 kx^2

here two spring system attached to a box of mass 1.5 kg, given compression on strong spring is 0.04 m

now 1/2 kx1^2= 1/2 kx2^2 ===> x2 = sqrt(k1/k2)* x1

                                                                 = sqrt(k1/k2)*0.04

now when it is released from rest total potential energy is converted in to kinetic energy

    1/2 (k1+k2)x^2= 1/2 m V^2

V= sqrt{(k+k2)/m}* x

the maximum speed the box will reach is V= sqrt{(k+k2)/m}* x

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A mass attached to a spring oscillates back and forth on a horizontal frictionless surface. The...
A mass attached to a spring oscillates back and forth on a horizontal frictionless surface. The velocity of the mass is modeled by the function v = 2πfA cos(2πft) when at t = 0, x = 0. What is the magnitude of the velocity in cm/s at the equilibrium position for an amplitude of 4.5 cm and a frequency of 2.3 Hz?
Two blocks with masses 3.0 kg and 5.0 kg are placed on a horizontal frictionless surface....
Two blocks with masses 3.0 kg and 5.0 kg are placed on a horizontal frictionless surface. A light spring is placed in a horizontal position between the blocks. The blocks are pushed together, compressing the spring, and then released from rest. After contact with the spring ends, the 5.0-kg mass has a speed of 2.0 m/s. How much potential energy was stored in the spring when the blocks were released?
A 0.30 kg block oscillates back and forth along a straight line on a frictionless horizontal...
A 0.30 kg block oscillates back and forth along a straight line on a frictionless horizontal surface. Its displacement from the origin is given by x = (18 cm)cos[(11 rad/s)t + π/2 rad] (a) What is the oscillation frequency? (b) What is the maximum speed acquired by the block? (c) At what value of x does this occur? (d) What is the magnitude of the maximum acceleration of the block? (e) At what positive value of x does this occur?...
A 4.00 kg mass on a frictionless horizontal surface is attached to a spring. The other...
A 4.00 kg mass on a frictionless horizontal surface is attached to a spring. The other end of the spring is fixed to a wall. The spring constant is 6.00 N/m. The mass is moved to the right, stretching the spring by 12.0 cm, and then released from rest. a) Find the frequency of the motion in Hz. b) Find the force when x = 6.00 cm. c) Find the time when x = 6.00 cm. d) Find the velocity...
An 8.0-g bullet is shot into a 4.0-kg block, at rest on a frictionless horizontal surface...
An 8.0-g bullet is shot into a 4.0-kg block, at rest on a frictionless horizontal surface (see the figure). The bullet remains lodged in the block. The block moves into an ideal massless spring and compresses it by 8.7 cm. The spring constant of the spring is 2400 N/m. The initial velocity of the bullet is closest to
A 2.00 kg block slides on a frictionless, horizontal surface with a speed of 5.10 m/s,...
A 2.00 kg block slides on a frictionless, horizontal surface with a speed of 5.10 m/s, until colliding head-on with, and sticking to, a 1.00 kg block at rest. A) Find the speed of the combination after the collision. B) The two blocks continue to slide together until coming in contact with a horizontal spring and eventually brought to rest. If the blocks compress the spring 10.0 cm, find the spring constant of the spring. C) How much work did...
6. A 0.10 kg block oscillates back and forth along a straight line on a frictionless...
6. A 0.10 kg block oscillates back and forth along a straight line on a frictionless horizontal surface. Its displacement from the origin is given by the equation of motion x=5cos⁡(10πt). What is the oscillation angular frequency and frequency? What is the maximum speed of the block? At what x does it moves the fastest? What is the maximum acceleration of the block? At what x does it accelerate the most? At what value of x does the force applied...
A 1.40 kg block slides with a speed of 0.950 m/s on a frictionless horizontal surface...
A 1.40 kg block slides with a speed of 0.950 m/s on a frictionless horizontal surface until it encounters a spring with a force constant of 734 N/m. The block comes to rest after compressing the spring 4.15 cm. Find the spring potential, U, the kinetic energy of the block, K, and the total mechanical energy of the system, E, for compressions of (a) 0 cm, (b) 1.00 cm, (c) 2.00 cm, (d) 3.00 cm, (e) 4.00 cm
m1 = 2.2 kg block slides on a frictionless horizontal surface and is connected on one...
m1 = 2.2 kg block slides on a frictionless horizontal surface and is connected on one side to a spring (k = 45 N/m) as shown in the figure above. The other side is connected to the block m2 = 4 kg that hangs vertically. The system starts from rest with the spring unextended. a) What is the maximum extension of the spring? m a) What is the speed of block m2 when the extension is 45 cm?
A 4.70-kg object on a frictionless horizontal surface is attached to one end of a horizontal...
A 4.70-kg object on a frictionless horizontal surface is attached to one end of a horizontal spring that has a force constant k = 570 N/m. The spring is stretched 9.30 cm from equilibrium and released. (a) What is the frequency of the motion? _____Hz (b) What is the period of the motion? ______s (c) What is the amplitude of the motion? ______cm (d) What is the maximum speed of the motion? ______m/s (e) What is the maximum acceleration of...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT