Question

A 89 g box is attached to a horizontal spring an compressed 9 cm to the...

A 89 g box is attached to a horizontal spring an compressed 9 cm to the left with a spring constant of 34 N/m. The box is released and undergoes SHM. a. What is the max speed of the box b. What is the speed of the box when it reaches 6.9 cm from the equilibrium position?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
An 81.9 g mass is attached to a horizontal spring with a spring constant of 3.5...
An 81.9 g mass is attached to a horizontal spring with a spring constant of 3.5 N/m and released from rest with an amplitude of 39.1 cm. What is the speed of the mass when it is halfway to the equilibrium position if the surface is frictionless? Answer in units of m/s.
A 0.1-kg ball is attached to the end of an ideal spring having a force constant...
A 0.1-kg ball is attached to the end of an ideal spring having a force constant (spring constant) of 600 N/m. If the spring is compressed 18 cm and released, what is the speed of the ball when it reaches a distance of 12 cm from the equilibrium position? Determine the period. Determine the amplitude.​ Determine the maximum speed. Determine the total energy.
A 30.0-g object is attached to a horizontal spring with a force constant of 15.0 N/m...
A 30.0-g object is attached to a horizontal spring with a force constant of 15.0 N/m and released from rest with an amplitude of 20.0 cm. What is the velocity of the object when it is halfway to the equilibrium position if the surface is frictionless? m/s
A horizontal spring attached to a wall has a force constant of k = 820 N/m....
A horizontal spring attached to a wall has a force constant of k = 820 N/m. A block of mass m = 1.20 kg is attached to the spring and rests on a frictionless, horizontal surface as in the figure below (a) The block is pulled to a position xi = 5.40 cm from equilibrium and released. Find the potential energy stored in the spring when the block is 5.40 cm from equilibrium. (b) Find the speed of the block...
A horizontal spring attached to a wall has a force constant of k = 720 N/m....
A horizontal spring attached to a wall has a force constant of k = 720 N/m. A block of mass m = 1.90 kg is attached to the spring and rests on a frictionless, horizontal surface as in the figure below. (a) The block is pulled to a position xi = 6.20 cm from equilibrium and released. Find the potential energy stored in the spring when the block is 6.20 cm from equilibrium. (b) Find the speed of the block...
A horizontal spring with spring constant 250 N/m is compressed by 20 cm and then used...
A horizontal spring with spring constant 250 N/m is compressed by 20 cm and then used to launch a 250 g box across the floor. The coefficient of kinetic friction between the box and the floor is 0.23. What is the box's launch speed?
A 2.90 kg block on a horizontal floor is attached to a horizontal spring that is...
A 2.90 kg block on a horizontal floor is attached to a horizontal spring that is initially compressed 0.0340 m . The spring has force constant 850 N/m . The coefficient of kinetic friction between the floor and the block is 0.42 . The block and spring are released from rest and the block slides along the floor. Part A What is the speed of the block when it has moved a distance of 0.0190 m from its initial position?...
An object with a mass m = 45.6 g is attached to a spring with a...
An object with a mass m = 45.6 g is attached to a spring with a force constant k = 12.3 N/m and released from rest when the spring is stretched 36.2 cm. If it is oscillating on a horizontal frictionless surface, determine the velocity of the mass when it is halfway to the equilibrium position.
A block attached to a horizontal spring is pulled to the right a distance of 19.0...
A block attached to a horizontal spring is pulled to the right a distance of 19.0 cm from the equilibrium position. The block is released and the block-spring system undergoes SHM at f = 1.28 Hz. Assuming that positive is to the right, determine at 0.300 s after release the block's displacement, velocity, and acceleration. Neglect friction. (Indicate the direction with the sign of your answer.)
A 0.55 kg block rests on a frictionless horizontal countertop, where it is attached to a...
A 0.55 kg block rests on a frictionless horizontal countertop, where it is attached to a massless spring whose k-value equals 23.0 N/m. Let x be the displacement, where x = 0 is the equilibrium position and x > 0 when the spring is stretched. The block is pushed, and the spring compressed, until xi = −4.00 cm. It then is released from rest and undergoes simple harmonic motion. (a) What is the block's maximum speed (in m/s) after it...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT