Question

A proton starts with a velocity of 5.7 x105 m/s and is accelerated through a potential...

A proton starts with a velocity of 5.7 x105 m/s and is accelerated through a potential difference of 2.5 kV. It then enters a magnetic field of 1.3 T. What is the radius of curvature of the path the proton will take? (ANS: 7.2mm)

Homework Answers

Answer #1

The charge of a proton is

Therefore, its change in kinetic energy is

Initial kinetic energy of the proton

Final Kinetic Energy of the proton is

Final velocity of the proton is

To calculate the radius of curvature, we note that for a circular path of the particle, the centrifugal force should be equal to the magnetic force.

Rearranging this, we get

Since

Substituting these into our equation, we get

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A charge q=-4.9nC and mass m=18.1picograms is accelerated from the rest through a potential difference of...
A charge q=-4.9nC and mass m=18.1picograms is accelerated from the rest through a potential difference of ΔV=173kV. It enters a region where a uniform B=66mT magnetic field is perpendicular to the velocity of the charge. Determine the radius of the path this charge will follow in the magnetic field( in meters).
A proton is accelerated through a potential difference of 10 kV and enters a uniform magnetic...
A proton is accelerated through a potential difference of 10 kV and enters a uniform magnetic field at right angles. Calculate the value of the magnetic flux density necessary to move the proton in a circular path of radius 10 mm. [6] A piece of wire of cross-sectional area A and resistivity ρ is bent into a circular loop of radius r and placed in a magnetic field with its plane at right angles to the field. Determine the magnitude...
(a) Compute the voltage required to accelerate an electron from rest to 6.00 * 10^-7 m/s...
(a) Compute the voltage required to accelerate an electron from rest to 6.00 * 10^-7 m/s ? (b) What is the the radius of curvature of the path of a proton accelerated through this potential in a 0.500-T field? Compare this with the radius of curvature of an electron accelerated through the same potential.
11.- A proton accelerated from rest by a potential difference acquires a speed of 5000 m...
11.- A proton accelerated from rest by a potential difference acquires a speed of 5000 m / s with which it enters a region in which there is a uniform magnetic field of 0.5 T perpendicular to the direction in which it moves the proton. a. Make a diagram of the forces and trajectory of the proton. b. Determine the radius of the circular trajectory that the proton follows within this region. c. Determine the time it takes to complete...
(a) Singly charged uranium-238 ions are accelerated through a potential difference of 2.50 kV and enter...
(a) Singly charged uranium-238 ions are accelerated through a potential difference of 2.50 kV and enter a uniform magnetic field of 1.30 T directed perpendicular to their velocities. Determine the radius of their circular path. (ANSWER) cm (b) Repeat for uranium-235 ions. (ANSWER) cm
Electrons are accelerated from rest through a potential difference of 350 V and then enter a...
Electrons are accelerated from rest through a potential difference of 350 V and then enter a uniform magnetic field that is perpendicular to the velocity of the electrons. The electrons travel along a curved path with the radius of 7.5 cm, because of a magnetic force. a. What is the magnitude of the magnetic field? b. Estimate the period of this circular path? c. What is the angular speed of the electrons? d. If protons are used instead of electrons,...
A singly charged 7Li ion has a mass of 1.16  10-26 kg. It is accelerated through a...
A singly charged 7Li ion has a mass of 1.16  10-26 kg. It is accelerated through a potential difference of 531 V and subsequently enters a uniform magnetic field of magnitude 0.366 T perpendicular to the ion's velocity. Find the radius of its path.
A singly charged 7Li ion has a mass of 1.16 10-26 kg. It is accelerated through...
A singly charged 7Li ion has a mass of 1.16 10-26 kg. It is accelerated through a potential difference of 485 V and subsequently enters a uniform magnetic field of magnitude 0.422 T perpendicular to the ion's velocity. Find the radius of its path.
A proton (mass mp), a deuteron (m=2mp,Q=e), and an alpha particle (m=4mp,Q=2e) are accelerated by the...
A proton (mass mp), a deuteron (m=2mp,Q=e), and an alpha particle (m=4mp,Q=2e) are accelerated by the same potential difference V and then enter a uniform magnetic field B⃗ , where they move in circular paths perpendicular to B⃗ . Determine the radius of the path for the deuteron in terms of that for the proton. Determine the radius of the path for the alpha particle in terms of that for the proton. Express your answers in terms of rp.
A proton, a deuteron, and an α-particle are accelerated from rest through a potential difference, ∆V...
A proton, a deuteron, and an α-particle are accelerated from rest through a potential difference, ∆V = 30 kV. They enter a region containing a uniform magnetic field of strength B = 0.25 T. The particles move parallel to each other and perpendicular to B~ . (a) Compute the kinetic energy of each particle. Which is largest? Which is smallest? By what factor? (b) Compute the radius of each particle’s cyclotron orbit. (c) Critical Thinking. Is this setup effective for...