Question

a 2.5 kg particle has a velocity given by v (t) = 4.00 t ^ 2...

a 2.5 kg particle has a velocity given by v (t) = 4.00 t ^ 2 i + 3.00 t j Determine the horizontal and vertical components of its momentum at time y = 1.0 s and find the magnitude and direction of the momentum.

6. the particle underwent a change in momentum.
a) true
b)flase

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
At time t = 0, a 4.0 kg particle with velocity v with arrow = (5.0...
At time t = 0, a 4.0 kg particle with velocity v with arrow = (5.0 m/s) i hat − (6.0 m/s) j is at x = 4.0 m, y = 2.0 m. It is pulled by a 6.0 N force in the negative x direction. (a) What is the angular momentum of the particle about the origin? (Express your answer in vector form.) (b) What torque about the origin acts on the particle? (Express your answer in vector form.)...
The position ? of a particle moving in space from (t=0 to 3.00 s) is given...
The position ? of a particle moving in space from (t=0 to 3.00 s) is given by ? = (6.00?^2− 2.00t^3 )i+ (3.00? − ?^2 )j+ (7.00?)? in meters and t in seconds. Calculate (for t = 1.57 s): a. The magnitude and direction of the velocity (relative to +x). b. The magnitude and direction of the acceleration (relative to +y). c. The angle between the velocity and the acceleration vector. d. The average velocity from (t=0 to 3.00 s)....
1-The velocity of a particle is v = { 6 i + ( 28 - 2...
1-The velocity of a particle is v = { 6 i + ( 28 - 2 t ) j } m/s, where t is in seconds. If r=0 when t=0, determine particle displacement during time interval t = 3 s to t = 8 s in the y direction. 2-A particle, originally at rest and located at point (1 ft, 4 ft, 5 ft), is subjected to an acceleration of a={ 3 t i + 17 t2k} ft/s. Determine magnitude...
.The x and y components of the velocity of a particle are: vx = (2 t...
.The x and y components of the velocity of a particle are: vx = (2 t + 4) p / s vy = (8 ⁄ y) p / s Initially, the particle is located at the coordinates x = 1 and y = 0. Determine the position, the magnitude of the velocity and the magnitude of the particle's acceleration when t = 2 s.
A particle of mass 2.00 kg moves with position r(t) = x(t) i + y(t) j...
A particle of mass 2.00 kg moves with position r(t) = x(t) i + y(t) j where x(t) = 10t2 and y(t) = -3t + 2, with x and y in meters and t in seconds. (a) Find the momentum of the particle at time t = 1.00 s. (b) Find the angular momentum about the origin at time t = 3.00 s.
The velocity v of a particle moving in the xy plane is given by v =...
The velocity v of a particle moving in the xy plane is given by v = (7.0t -4.0t2 )i + 7.5j, in m/s. Here v is in m/s and t (for positive time) is in s. What is the acceleration when t = 3.0 s? i-component of acceleration? j-component of acceleration? When (if ever) is the acceleration zero (enter time in s or 'never')? When (if ever) is the velocity zero (enter time in s or 'never')?
A 3.00-kg particle starts from the origin at time zero. Its velocity as a function of...
A 3.00-kg particle starts from the origin at time zero. Its velocity as a function of time is given by v = (3t^2) i+ (2t) j where v is in meters per second and t is in seconds. (a) Find its position at t = 1s. (b) What is its acceleration at t = 1s ? (c) What is the net force exerted on the particle at t = 1s ?   (d) What is the net torque about the origin...
A 3.65 kg particle with velocity v→=(8.97m/s)î-(4.43m/s)ĵ is at x = 7.38 m, y = 5.02...
A 3.65 kg particle with velocity v→=(8.97m/s)î-(4.43m/s)ĵ is at x = 7.38 m, y = 5.02 m. It is pulled by a 2.09 N force in the negative x direction. About the origin, what are (a) the particle's angular momentum, (b) the torque acting on the particle, and (c) the rate at which the angular momentum is changing?
The components ? and ? of the velocity of a particle are: ?? = (2 ?...
The components ? and ? of the velocity of a particle are: ?? = (2 ? + 4) f / s ?? = (8 ⁄ ?) f / s (feet/sec) Initially the particle is in the coordinates ? = 1 and ? = 0. Determine the position, magnitude of velocity, and magnitude of acceleration of the particle when t = 2 s.
Find the velocity and position vectors of a particle that has the given acceleration and the...
Find the velocity and position vectors of a particle that has the given acceleration and the given initial velocity and position. a(t) = (6t + et) i + 12t2 j, v(0) = 3i, r(0) = 7 i − 3 j v(t)= r(t)=
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT