Question

Part A What plate area is required if an air-filled, parallel-plate capacitor with a plate separation...

Part A
What plate area is required if an air-filled, parallel-plate capacitor with a plate separation of 3.4\({\rm mm}\) is to have a capacitance of 23\({\rm pF}\) ? I GOT THE CORRECT ANS FOR A, BUT WAS IS B???????
Express your answer using two significant figures.
\(A\) =
8.8

Homework Answers

Answer #1

I have solved this question earlier with different figures. Please workout using yours figures. If you need any further help just PM me. If I have helped you please rate me 5 stars first (before you rate anyone else).

What plate area is required if an air-filled, parallel-plate capacitor with a plate separation of 2.4 mm is to have a capacitance of 18 pF?

What is the maximum voltage that can be applied to this capacitor without causing dielectric breakdown?


     

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
An air-filled parallel plate capacitor has a capacitance of 61 pF. (a) What is the separation...
An air-filled parallel plate capacitor has a capacitance of 61 pF. (a) What is the separation of the plates if each plate has an area of 0.3 m2? cm (b) If the region between the plates is filled with a material with κ = 3.5, what is the final capacitance?
An isolated air-filled parallel-plate capacitor that is no longer connected to anything has been charged up...
An isolated air-filled parallel-plate capacitor that is no longer connected to anything has been charged up to Q = 3.4 nC. The separation between the plates initially is 3.4 mm, and for this separation the capacitance is 63 pF. Calculate the work that must be done to pull the plates apart until their separation becomes 6.7 mm, if the charge on the plates remains constant. (ε0 = 8.85 × 10-12 C2/N ∙ m2). Give you answer to the nearest 0.01...
The parallel plates in a capacitor, with a plate area of 6.80 cm2 and an air-filled...
The parallel plates in a capacitor, with a plate area of 6.80 cm2 and an air-filled separation of 2.90 mm, are charged by a 5.90 V battery. They are then disconnected from the battery and pulled apart (without discharge) to a separation of 8.90 mm. Neglecting fringing, find (a) the potential difference between the plates, (b) the initial stored energy, (c) the final stored energy, and (d) the work required to separate the plates.
The parallel plates in a capacitor, with a plate area of 6.10 cm2 and an air-filled...
The parallel plates in a capacitor, with a plate area of 6.10 cm2 and an air-filled separation of 4.20 mm, are charged by a 7.20 V battery. They are then disconnected from the battery and pulled apart (without discharge) to a separation of 7.40 mm. Neglecting fringing, find (a) the potential difference between the plates, (b) the initial stored energy, (c) the final stored energy, and (d) the work required to separate the plates.
The parallel plates in a capacitor, with a plate area of 6.10 cm2 and an air-filled...
The parallel plates in a capacitor, with a plate area of 6.10 cm2 and an air-filled separation of 4.50 mm, are charged by a 8.70 V battery. They are then disconnected from the battery and pulled apart (without discharge) to a separation of 8.80 mm. Neglecting fringing, find (a) the potential difference between the plates, (b) the initial stored energy, (c) the final stored energy, and (d) the work required to separate the plates.
A parallel plate capacitor is constructed with plates of area 0.0250 m2 and separation of 0.455...
A parallel plate capacitor is constructed with plates of area 0.0250 m2 and separation of 0.455 mm. What is the magnitude of the electric field between the plates of the capacitor? Report your answer to the correct number of significant figures.
A dielectric-filled parallel-plate capacitor has plate area A = 10.0 cm2 , plate separation d =...
A dielectric-filled parallel-plate capacitor has plate area A = 10.0 cm2 , plate separation d = 10.0 mm and dielectric constant k = 4.00. The capacitor is connected to a battery that creates a constant voltage V = 12.5 V . Throughout the problem, use ϵ0 = 8.85×10−12 C2/N⋅m2 . Part A) Find the energy U1 of the dielectric-filled capacitor. Express your answer numerically in joules. Part B) The dielectric plate is now slowly pulled out of the capacitor, which...
A dielectric-filled parallel-plate capacitor has plate area A = 30.0 cm2 , plate separation d =...
A dielectric-filled parallel-plate capacitor has plate area A = 30.0 cm2 , plate separation d = 6.00 mm and dielectric constant k = 4.00. The capacitor is connected to a battery that creates a constant voltage V = 5.00 V . Throughout the problem, use ϵ0 = 8.85×10−12 C2/N⋅m2 . Part (A) Find the energy U1 of the dielectric-filled capacitor. (Express your answer numerically in joules.) Part(B) The dielectric plate is now slowly pulled out of the capacitor, which remains...
IP Consider a parallel-plate capacitor constructed from two circular metal plates of radius RR. The plates...
IP Consider a parallel-plate capacitor constructed from two circular metal plates of radius RR. The plates are separated by a distance of 1.4 mm . Part A- What radius must the plates have if the capacitance of this capacitor is to be 1.8 μF ? Express your answer using two significant figures. Part B- If the separation between the plates is increased, should the radius of the plates be increased or decreased to maintain a capacitance of 1.8 μF ?...
A dielectric-filled parallel-plate capacitor has plate area A = 25.0 cm2 , plate separation d =...
A dielectric-filled parallel-plate capacitor has plate area A = 25.0 cm2 , plate separation d = 6.00 mm and dielectric constant k = 3.00. The capacitor is connected to a battery that creates a constant voltage V = 5.00 V . Throughout the problem, use ϵ0 = 8.85×10−12 C2/N⋅m2 . Part A Find the energy U1 of the dielectric-filled capacitor. Express your answer numerically in joules. Part B The dielectric plate is now slowly pulled out of the capacitor, which...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT