Question

A single, nonconstant force acts in the +x-+x-direction on a 4.06 kg4.06 kg object that is...

A single, nonconstant force acts in the +x-+x-direction on a 4.06 kg4.06 kg object that is constrained to move along the x-x-axis. As a result, the object's position as a function of time is

x(t)=A+Bt+Ct^3

where A=4.43 m, B=3.12 m/s, and C=0.308 m/s.

How much work is done by this force from t=0 st=0 s to t=2.14 s?

Homework Answers

Answer #1

The force acting on the object
F= m a = m dv/dt = m d2x/dt2
F = m d2(A + B t + C t3) /dt2
F = m d (B + 3 C t2)/dt
F = m . 6 C t
F = 4.06 kg x 6 x 0.308 m/s x t
F = 7.503 t
F is the function of time
F(t) = 7.503 t
The work done is
W = F. x
Where x is the displacement

Where v is the velocity of the object,
v = d x / dt = B + 3 C t2, Subtituing this,


Substituting the values for A, B and C we get
W = 553.57 J

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A single force acts on a 3.7 kg particle-like object in such a way that the...
A single force acts on a 3.7 kg particle-like object in such a way that the position of the object as a function of time is given by x = 2.1t - 1.5t2 + 4.2t3, with x in meters and t in seconds. Find the work done on the object by the force from t = 0 to t = 7.2 s.
A conservative force F(x) acts on a 2.0 kg particle that moves along an x axis....
A conservative force F(x) acts on a 2.0 kg particle that moves along an x axis. The potential energy U(x) associated with F(x) is graphed in the figure. When the particle is at x = 2.0 m, its velocity is -1.265 m/s. What is F(2.)? (sign gives direction) Between what positions on the left and right does the particle move? Left side? Right side? What is the particle's speed at x = 7.0 m
A 15.0 kg object is moving at 8.50 m/s. A constant force then acts on the...
A 15.0 kg object is moving at 8.50 m/s. A constant force then acts on the object for 2.25 seconds, bringing its final velocity to 3.75 m/s in the opposite direction. a. Calculate the impulse acting on the object b. What is the magnitude and direction of the force? c. What is the momentum of the object before and after the force acts?
A single conservative force acts on a 5.00 kg particle. The equation Fx = (2x +...
A single conservative force acts on a 5.00 kg particle. The equation Fx = (2x + 4) N describes this force, where x is in meters. As the particle moves along the x axis from x = 3.00 m to x = 7.00 m, calculate the following. (a) the work done by this force on the particle J (b) the change in the potential energy of the system J (c) the kinetic energy the particle has at x = 7.00...
A 6.32-kg object passes through the origin at time t = 0 such that its x...
A 6.32-kg object passes through the origin at time t = 0 such that its x component of velocity is 4.85 m/s and its ycomponent of velocity is -3.12 m/s. (a) What is the kinetic energy of the object at this time? J (b) At a later time t = 2.00 s, the particle is located at x = 8.50 m and y = 5.00 m. What constant force acted on the object during this time interval? magnitude N direction...
An object object travels 31 meters in the +x direction for 3.2 seconds, and then immediately...
An object object travels 31 meters in the +x direction for 3.2 seconds, and then immediately travels some distance in the -x direction. After a total time of 7.7 seconds, the object's average velocity is 0 m/s. What is the average velocity for the second part of the trip (traveling in the -x direction) in m/s? If in the negative x direction, indicate so with a negative sign. PLEASE SHOW WORK!!!!
An object is initially at rest at the origin at time t=0, when a force in...
An object is initially at rest at the origin at time t=0, when a force in Newtons acts on the object in 1 dimension along the x axis of F(t)=25.0t2-2.0t3 where t is time in seconds. What is the momentum of the object at time t = 12.5 seconds?
A 0.450 kg object attached to a spring with a force constant of 8.00 N/m vibrates...
A 0.450 kg object attached to a spring with a force constant of 8.00 N/m vibrates in simple harmonic motion with an amplitude of 12.0 cm. (Assume the position of the object is at the origin at t = 0.) (a) Calculate the maximum value (magnitude) of its speed and acceleration. ___cm/s ___cm/s2 (b) Calculate the speed and acceleration when the object is 9.00 cm from the equilibrium position. ___cm/s ___cm/s2 (c) Calculate the time interval required for the object...
A 5.97-kg object passes through the origin at time t = 0 such that its x...
A 5.97-kg object passes through the origin at time t = 0 such that its x component of velocity is 5.40 m/s and its y component of velocity is -3.24 m/s. (a) What is the kinetic energy of the object at this time?   (b) At a later time t = 2.00 s, the particle is located at x = 8.50 m and y = 5.00 m. What constant force acted on the object during this time interval? magnitude direction °...
A force F= (3.14t)i+ 6.28j + (1.57t^2)k N acts on a mass of 0.785 kg in...
A force F= (3.14t)i+ 6.28j + (1.57t^2)k N acts on a mass of 0.785 kg in space, with initial velocity v= 7.21i + 9.76j + 3.25k (m/s). At t = 1.71 s, (a) What are the magnitude and direction of the acceleration? (relative to +z axis) (b) What are the magnitude and direction of the velocity? (relative to +y axis) (c) What are the magnitude and direction of the displacement? (relative to +x axis) (d) The angle between the velocity...