Question

To measure the magnetic field, one of the method is through a
coil of N turns of area A and placed in a permanent magnet to
maximize the magnetic flux through the coil. A quick motion of the
coil away from the magnet create a flow of charge Q within a time
t. If the circuit is closed with a galvanometer, a resistance R is
created. Give the expression of:

a) The flux through the loop

b) The current through the coil

c) The magnetic field around the coil

d) Explain the overtime variation in magnetic field and so the
charge variation, including drawing. 10 pts

Answer #1

Assuming B as the magnetic field

a) Magnetic flux through the one loop will be

= BA

and net flux through all loops will be

= NBA

b) the average current in this time interval will be

I = Q/t

c) The change in magnetic flux is the induced emf in the loop;

e = d/dt = NBA/t

and e/R = I

=>e/R = Q/t

=> NBA/Rt = Q/t

=> B = QR/NA

d) The charge Q only depends on the magnetic field, it does not depend on time. The more you increase the magnetic field the more is the charge induced. In overtime situation the induced current will also produce as magnetic field opposing the magnetic flux through the magnetic field reducing the magnetic field through loop and thus reducing the charge on it as well.

Magnetic field values are often determined by using a device
known as a search coil. This technique depends on the measurement
of the total charge passing through a coil in a time interval
during which the magnetic flux linking the windings changes either
because of the motion of the coil or because of a change in the
value of B. As a specific example, calculate B when a 69-turn coil
of resistance 248Ω and cross-sectional area 42.5m2 produces the
following...

A circular coil with radius r and N turns rotates in a magnetic
field B with angular velocity ω. The coil is connected to a
resistor with resistance R. Find the average power delivered to the
resistor.

A magnetic field, strength 3T, has a direction out of the page.
A loop of wire sits in the field and on the plane of the page (area
vector of loop is out of page). The loop is much smaller than the
extent of the field. The magnetic field starts to slowly change at
a rate of -0.0001T/s. Looking down on the loop, which statement is
correct?
A. Magnetic flux out of page decreasing; anti-clockwise current
induced in loop
B....

A generator is constructed by rotating a coil of N turns in a
magnetic field B at a frequency f. The internal resistance of the
coil is R and the cross sectional area of the coil is A. Decide
which statements are true and which are false. If the first is T
and the rest F, enter TFFFFF.
A) The maximum induced EMF occurs when the coil is rotated about
an axis parallel to the magnetic field lines.
B) The...

Chapter 22, Problem 26 GO
A flat coil of wire has an area A, N turns,
and a resistance R. It is situated in a magnetic field,
such that the normal to the coil is parallel to the magnetic field.
The coil is then rotated through an angle of 90˚, so that the
normal becomes perpendicular to the magnetic field. The coil has an
area of 1.5 × 10-3 m2, 50 turns, and a
resistance of 150 Ω. During the...

Written Problem: Induction from a falling
magnet
We have a small magnet with a magnetic moment of m = 0.1
Am2 (remember: magnetic moment is defined as m = IA -
see page 932 of book for the definition). We also have coils of
wire. The coils are made out of 100 circular loops of a single
wire. A single loop has a radius of 10 cm. The thickness of the
wire has a circular cross section with a 0.5...

1 a) A certain tightly-wound coil of wire is perpendicular to an
external magnetic field. The magnetic field has a strength of 3.4
mT, and the coil is circular with a radius of 10.7 cm. If I run a
current of 4.5 A through the wire (in the right direction), I can
cause the net flux through the coil to be zero. If the coil has 26
turns, what is its inductance? Express your answer in mH
(millihenrys).
b) An...

The direction of the magnetic force on an electron moving
through a magnetic field is the same as the direction of the vector
formed by taking the cross product of the velocity with the
magnetic field (v x B).
True/ False
The magnetic field is also referred to as the magnetic flux
_____________ [one word].
Consider a particle moving through a magnetic field. If the
magnetic field doubles and the velocity of the particle halves, the
magnetic force will:...

3.Explain why if a CD power supply is used, only when the power
supply is turned on or of there is an induced current in the second
coil (secondary).
4. Explain why when the switch is on, and there is a direct
current through the circuit, there is no induced electric current
in that coil.
Electromagnetic Induction
I. Objectives
1. Verify the Faraday-Lenz‘s Law
2. Perform measurements with a set of coils to understand how a
transformer works.
II. Theory
In...

A 5.0-cm-diameter coil has 20 turns and a resistance
of 0.50 Ω. A magnetic field "parallel" to the coil's axis is B =
0.020t + 0.010t2, where B is in tesla and t is in seconds.
a) Find an expression for the induced current I(t) as
a function of time.
b) Evaluate I at t = 10 s and t = 20 s.

ADVERTISEMENT

Get Answers For Free

Most questions answered within 1 hours.

ADVERTISEMENT

asked 9 minutes ago

asked 9 minutes ago

asked 19 minutes ago

asked 32 minutes ago

asked 46 minutes ago

asked 47 minutes ago

asked 54 minutes ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago