Question

ir is mostly a mixture of diatomic oxygen and nitrogen; treat it as an ideal gas...

ir is mostly a mixture of diatomic oxygen and nitrogen; treat it as an ideal gas with

?=1.40,

?v =20.8J⋅mol−1⋅K−1.

Theuniversalgasconstantis?=8.315J⋅mol−1 K−1. The compression ratio of a diesel engine is 15:1, meaning that air in the

cylinders is compressed to 1/15 of its initial volume. If the initial pressure is 1.01 × 105 Pa and the initial temperature is 300 K, find:

i) The final temperature after adiabatic compression.

ii) The final pressure after adiabatic compression.

iii) How much work the gas does during the compression if the initial volume of the cylinder is 1.00 L = 1.00 × 10−3 m3.

Homework Answers

Answer #1

Solution.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A vessel with a movable piston contains 1.90 mol of an ideal gas with initial pressure...
A vessel with a movable piston contains 1.90 mol of an ideal gas with initial pressure Pi = 2.03 ✕ 105 Pa, initial volume Vi = 1.00 ✕ 10−2 m3, and initial temperature Ti = 128 K. (a) What is the work done on the gas during a constant-pressure compression, after which the final volume of the gas is 2.50 L? J (b) What is the work done on the gas during an isothermal compression, after which the final pressure...
A 0.505-mol sample of an ideal diatomic gas at 408 kPa and 309 K expands quasi-statically...
A 0.505-mol sample of an ideal diatomic gas at 408 kPa and 309 K expands quasi-statically until the pressure decreases to 150 kPa. Find the final temperature and volume of the gas, the work done by the gas, and the heat absorbed by the gas if the expansion is the following. (a) isothermal final temperature K volume of the gas L work done by the gas J heat absorbed J (b) adiabatic final temperature K volume of the gas L...
An insulated cylinder is filled with nitrogen gas at 25ºC and 1.00 bar. The nitrogen is...
An insulated cylinder is filled with nitrogen gas at 25ºC and 1.00 bar. The nitrogen is then compressed adiabatically with a constant pressure of 5.00 bar until equilibrium is reached. i. What is the final temperature of the nitrogen if it is treated as an ideal gas with molar heat capacity CP = 7/2 R ? ii. Calculate ΔH (in kJ mol-1 ) and ΔS (in J mol-1 K-1 ) for the compression. (Hint: Because the enthalpy is a state...
The volume of an ideal gas is adiabatically reduced from 200 L to 74.3 L. The...
The volume of an ideal gas is adiabatically reduced from 200 L to 74.3 L. The initial pressure and temperature are 1.00 atm and 300 K. The final pressure is 4.00 atm. ? = 8.314 J/mol.K , ????????? = 1.4, ??????????? = 1.67 and 1 atm = 1.013 × 10^5 Pa. mol.K (a) Is the gas monatomic or diatomic? (b) What is the final temperature? (c) How many moles are in the gas?
An ideal gas is brought through an isothermal compression process. The 4.00 mol of gas goes...
An ideal gas is brought through an isothermal compression process. The 4.00 mol of gas goes from an initial volume of 259.4×10−6 m3 to a final volume of 110.6×10−6 m3 . If 8070 J is released by the gas during this process, what are the temperature ? and the final pressure ?? of the gas? ?= K ?f= Pa
A cylinder with a piston contains 0.100 mol of nitrogen at 2.00×105 Pa and 320 K...
A cylinder with a piston contains 0.100 mol of nitrogen at 2.00×105 Pa and 320 K . The nitrogen may be treated as an ideal gas. The gas is first compressed isobarically to half its original volume. It then expands adiabatically back to its original volume, and finally it is heated isochorically to its original pressure. A) Find the work done by the gas during the initial compression B) Find the heat added to the gas during the initial compression...
A cylinder with a piston contains 0.160 mol of nitrogen at 1.80×105 Pa and 310 K...
A cylinder with a piston contains 0.160 mol of nitrogen at 1.80×105 Pa and 310 K . The nitrogen may be treated as an ideal gas. The gas is first compressed isobarically to half its original volume. It then expands adiabatically back to its original volume, and finally it is heated isochorically to its original pressure. a.) Find the work done by the gas during the initial compression. b.)Find the heat added to the gas during the initial compression. c.)Find...
A Jaguar XK8 convertible has an eight-cylinder engine. At the beginning of its compression stroke, one...
A Jaguar XK8 convertible has an eight-cylinder engine. At the beginning of its compression stroke, one of the cylinders contains 498 cm3 of air at atmospheric pressure (1.01×105Pa) and a temperature of 27.0 ?C. At the end of the stroke, the air has been compressed to a volume of 46.4 cm3 and the gauge pressure has increased to 2.80×106 Pa . Compute the final temperature.
A 2.00-mol sample of a diatomic ideal gas expands slowly and adiabatically from a pressure of...
A 2.00-mol sample of a diatomic ideal gas expands slowly and adiabatically from a pressure of 5.04 atm and a volume of 13.0 L to a final volume of 31.0 L. (a) What is the final pressure of the gas? atm (b) What are the initial and final temperatures? initial K final K (c) Find Q for the gas during this process. kJ (d) Find ΔEint for the gas during this process. kJ (e) Find W for the gas during...
One mole of an ideal gas does 3000 J of work on its surroundings as it...
One mole of an ideal gas does 3000 J of work on its surroundings as it expands isothermally to a final pressure of 1.00 atm and volume of 25.0 L. Determine: a) the initial volume ? b) the temperature of the gas? (Note: 1 atm = 1.01 x 105Pa, universal gas constant R = 8.31 J/mol K, 1 L = 10-3m3)
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT