Question

A 3.0 kg mass is moving at 7.0 m/s on a frictionless flat surface and it...

A 3.0 kg mass is moving at 7.0 m/s on a frictionless flat surface and it collides and sticks to a stationary 7.0 kg mass. The larger mass is attached to a light spring of force constant 200 N/m

1. construct an equation of motion for the following with t=0 representing the moment immediately after the collision at x=0: x(t) and v(t)

2. Sketch x(t) and v(t) as a function of time.

confused and would like help please, thanks!

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
On a horizontal, frictionless surface, a 0.50-kg mass is at rest at x=0, attached to a...
On a horizontal, frictionless surface, a 0.50-kg mass is at rest at x=0, attached to a wall by a spring whose spring constant is 5.0 N/m. I throw a 0.10-kg lump of clay at the mass with speed 3.0 m/s, and at time t=0 the lump hits the mass and sticks to it. (a) Where and when does the block first come to a stop? (b) How fast is the block moving when it gets back to x=0?
On a frictionless air track, a 0.165 kg glider moving at 1.50 m/s to the right...
On a frictionless air track, a 0.165 kg glider moving at 1.50 m/s to the right collides with and sticks to a stationary 0.265 kg glider. What is the net momentum of this two-glider system before the collision? Use coordinates where +x is in the direction of the initial motion of the lighter glider (Express answer in kg•m/s) What must be the net momentum of this system after the collision (Express answer in kg•m/s) Use your answers in Parts A...
A 2.2 kg block moving at 3.5 m/s collides and sticks with a stationary block of...
A 2.2 kg block moving at 3.5 m/s collides and sticks with a stationary block of mass 4.5 kg. What is their combined speed immediately after the collision?
A block of mass M = 5.60 kg, at rest on a horizontal frictionless table, is...
A block of mass M = 5.60 kg, at rest on a horizontal frictionless table, is attached to a rigid support by a spring of constant k = 5860 N/m. A bullet of mass m = 9.20 g and velocity ModifyingAbove v With right-arrow of magnitude 660 m/s strikes and is embedded in the block (the figure). Assuming the compression of the spring is negligible until the bullet is embedded, determine (a) the speed of the block immediately after the...
A 7.0 kg block with a speed of 3.0 m/s collides with a 14.0 kg block...
A 7.0 kg block with a speed of 3.0 m/s collides with a 14.0 kg block that has a speed of 2.0 m/s in the same direction. After the collision, the 14.0 kg block is observed to be traveling in the original direction with a speed of 2.5 m/s. (a) What is the velocity of the 7.0 kg block immediately after the collision? (b) By how much does the total kinetic energy of the system of two blocks change because...
On a frictionless air track, a 0.150 kg glider moving at 1.20 m/s to the right...
On a frictionless air track, a 0.150 kg glider moving at 1.20 m/s to the right collides with and sticks to a stationary 0.250 kg glider. A) What is the momentum of this two glider system before the collision? B) What must be the net momentum of this system after the collision? Why? C) Use answers from a and b to find the speed of the gliders after the collision. D) Is kinetic energy conserved during the collision?
A block of mass M = 5.80 kg, at rest on a horizontal frictionless table, is...
A block of mass M = 5.80 kg, at rest on a horizontal frictionless table, is attached to a rigid support by a spring of constant k = 6250 N/m. A bullet of mass m = 8.30 g and velocity of magnitude 570 m/s strikes and is embedded in the block (the figure). Assuming the compression of the spring is negligible until the bullet is embedded, determine (a) the speed of the block immediately after the collision and (b) the...
Block 2 with mass m2=5.0 kg is at rest on a frictionless surface and connected to...
Block 2 with mass m2=5.0 kg is at rest on a frictionless surface and connected to a spring constant k=64.0 N/m. The other end of the spring is connected to a wall, and the spring is initially at its equilibrium (unstretched) position. Block 1 with mass m1=10.0 is initially traveling with speed v1=4.0 m/s and collides with block 2. The collision is instantaneous, and the blocks stick together after the collision. Find the speed of the blocks immediately after the...
A ball with mass M = 5 kg is moving with speed V=10 m/s and collides...
A ball with mass M = 5 kg is moving with speed V=10 m/s and collides with another ball with mass m = 2.5 kg which is initially stationary. There is no other force such as gravity acting on the two balls. After the collision, both balls move at angle θ=30 degrees relative to initial direction of motion of the ball with mass M = 5 kg. a) What are the speeds of the two balls after the collision? b)...
A 5.0-kg mass moving at 8.0 m/s collides head-on with a 3.0-kg mass initially at rest...
A 5.0-kg mass moving at 8.0 m/s collides head-on with a 3.0-kg mass initially at rest If the collision is perfectly elastic, what is the speed of the masses just after the collision? Is the kinetic energy conserved?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT