Question

Two particles, ?1 and ?2, undergo a glancing elastic collision. Initially mass ?1 moves along the...

Two particles, ?1 and ?2, undergo a glancing elastic collision. Initially mass ?1 moves along the negative ?-direction and ?2 along the positive ?-direction, both with speed ?? . After the collision ?1 moves along the negative ?-direction. Given that ?2 = 8 ?1, find the magnitudes of the velocities of both particles in terms of ?? , and the direction of mass ?2.

Homework Answers

Answer #1

In y direction, conservation of momentum

-m1ui + m2ui = m2 v2y

m2 = 8 m1

-m1ui + 8m1ui1 = 8m1 v2y

v2y = 7ui/8 in +y direction

in x direction, conservation of momentum,

0 = -m1v1 + m2v2x

v1 = 8v2x

conservation of kinetic energy

1/2 m1 ui^2 + 1/2 8 m1 ui^2 = 1/2 m1 v1^2 + 1/2 8m1 v2^2

9ui^2 = v1^2 + 8v2^2

9ui^2 = 64 v2x^2 + 8(v2x^2 + v2y^2)

9ui^2 = 72 v2x^2 + 49/8 ui^2

v2x = 0.1998 ui

Magnitude of velocity of m2 = 0.8975 ui

magnitude of velocity of m1 = 1.5986 ui

direction of m2 = 77 degrees from + x axis (CCW)

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Two particles, of mass m and mass nm, undergo a head-on, fully elastic collision. (Here n...
Two particles, of mass m and mass nm, undergo a head-on, fully elastic collision. (Here n is just a unitless number.) Before colliding the particles approach one another with equal speed v. Snapshots of the particles before, during, and after the collision are shown above. After the collision the first particle moves away with speed 2.95v in the exact opposite direction, and the velocity of the second particle is unknown. What is the value of n? Before Collision (m)-><-(nm) Collision...
Two gliders, A and B undergo an elastic collision along a horizontal air track. (a) Show...
Two gliders, A and B undergo an elastic collision along a horizontal air track. (a) Show that the velocities of the gliders follow the relationship: , where the subscripts 1 and 2 denote the speeds before and after the collision, respectively, and the subscripts A and B refer to each glider. (b) If glider B is initially at rest and has a mass of 0.20 kg, and glider A moves at 3.0 m/s before the collision at -0.50 m/s after...
Two particles with masses m and 4m are moving toward each other along the x axis...
Two particles with masses m and 4m are moving toward each other along the x axis with the same initial speeds vi. Particle m is traveling to the left, while particle 4m is traveling to the right. They undergo an elastic, glancing collision such that particle m is moving in the negative y direction after the collision at a right angle from its initial direction. (a) Find the final speeds of the two particles in terms of vi. particle m__________...
Two shuffleboard disks of equal mass, one orange and the other yellow, are involved in an...
Two shuffleboard disks of equal mass, one orange and the other yellow, are involved in an elastic, glancing collision. The yellow disk is initially at rest and is struck by the orange disk moving with a speed of 6.00 m/s. After the collision, the orange disk moves along a direction that makes an angle of 35.0° with its initial direction of motion. The velocities of the two disks are perpendicular after the collision. Determine the final speed of each disk....
Two shuffleboard disks of equal mass, one orange and the other yellow, are involved in an...
Two shuffleboard disks of equal mass, one orange and the other yellow, are involved in an elastic, glancing collision. The yellow disk is initially at rest and is struck by the orange disk moving with a speed of 6.00 m/s. After the collision, the orange disk moves along a direction that makes an angle of 36.0° with its initial direction of motion. The velocities of the two disks are perpendicular after the collision. Determine the final speed of each disk....
A cue ball traveling at 4.25 m/s makes a glancing, elastic collision with a target ball...
A cue ball traveling at 4.25 m/s makes a glancing, elastic collision with a target ball of equal mass that is initially at rest. The cue ball is deflected so that it makes an angle of 30.0° with its original direction of travel. (a) Find the angle between the velocity vectors of the two balls after the collision. ° (b) Find the speed of each ball after the collision. cue ball     m/s target ball     m/s
A cue ball traveling at 8.0 m/s makes a glancing, elastic collision with a target ball...
A cue ball traveling at 8.0 m/s makes a glancing, elastic collision with a target ball of equal mass that is initially at rest. The cue ball is deflected so that it makes an angle of 30° with its original direction of travel. (a) Find the angle between the velocity vectors of the two balls after the collision. _____° (b) Find the speed of each ball after the collision. cue ball ____m/s target ball _____m/s
A cue ball traveling at 4.0 m/s makes a glancing, elastic collision with a target ball...
A cue ball traveling at 4.0 m/s makes a glancing, elastic collision with a target ball of equal mass that is initially at rest. The cue ball is deflected so that it makes an angle of 30° with its original direction of travel. Find the speed of each ball after the collision. cue ball? target ball?
A cue ball traveling at 4.23 m/s makes a glancing, elastic collision with a target ball...
A cue ball traveling at 4.23 m/s makes a glancing, elastic collision with a target ball of equal mass that is initially at rest. The cue ball is deflected so that it makes an angle of 30.0° with its original direction of travel. (a) Find the angle between the velocity vectors of the two balls after the collision. ______° (b) Find the speed of each ball after the collision. cue ball ___ m/s target ball ___ m/s SHOW ALL WORK!
Two shuffleboard disks of equal mass, one orange and the other yellow, are involved in an...
Two shuffleboard disks of equal mass, one orange and the other yellow, are involved in an elastic, glancing collision. The yellow disk is initially at rest and is struck by the orange disk moving with a speed vi. After the collision, the orange disk moves along a direction that makes an angle ? with its initial direction of motion. The velocities of the two disks are perpendicular after the collision. Determine the final speed of each disk. (Use any variable...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT