Question

            An electron is confined between x = 0 and x = L. The wave function...

            An electron is confined between x = 0 and x = L. The wave function of the electron is ψ(x) = A sin(2πx/L). The wave function is zero for the regions x < 0 and x > L. (a) Determine the normalization constant A. (b) What is the probability of finding the electron in the region 0 ≤ xL/8? { (2/L)1/2, 4.54%}

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The wave function for a particle confined to a one-dimensional box located between x = 0...
The wave function for a particle confined to a one-dimensional box located between x = 0 and x = L is given by Psi(x) = A sin (n(pi)x/L) + B cos (n(pi)x/L) . The constants A and B are determined to be
Consider the wave function at t = 0, ψ(x, 0) = C sin(3πx/2) cos(πx/2) on the...
Consider the wave function at t = 0, ψ(x, 0) = C sin(3πx/2) cos(πx/2) on the interval 0 ≤ x ≤ 1. (1) What is the normalization constant, C? (2) Express ψ(x,0) as a linear combination of the eigenstates of the infinite square well on the interval, 0 < x < 1. (You will only need two terms.) (3) The energies of the eigenstates are En = h̄2π2n2/(2m) for a = 1. What is ψ(x, t)? (4) Compute the expectation...
Consider a wave packet of a particle described by the wavefunction ψ(x,0) = Axe^−(x^2/L^2), -∞ ≤  x...
Consider a wave packet of a particle described by the wavefunction ψ(x,0) = Axe^−(x^2/L^2), -∞ ≤  x ≤ ∞. a) Draw this wavefunction, labeling the axes in terms of A and L. b) Find the relationship between A and L that satisfies the normalization condition. c) Calculate the approximate probability of finding the particle between positions x = −L and x = L. d) What are 〈x〉, 〈x^2〉, and σ_x ? (Hint: use shortcuts where possible). e) Find the minimum uncertainty...
The wave function of a particle is ψ (x) = Ne (-∣x∣ / a) e (iP₀x...
The wave function of a particle is ψ (x) = Ne (-∣x∣ / a) e (iP₀x / ℏ). Where a and P0 are constant; (e≃2,71 will be taken). a) Find the normalization constant N? b) Calculate the probability that the particle is between [-a / 2, a / 2]? c) Find the mean momentum and the mean kinetic energy of the particle in the x direction.
7. A particle of mass m is described by the wave function ψ ( x) =...
7. A particle of mass m is described by the wave function ψ ( x) = 2a^(3/2)*xe^(−ax) when x ≥ 0 0 when x < 0 (a) (2 pts) Verify that the normalization constant is correct. (b) (3 pts) Sketch the wavefunction. Is it smooth at x = 0? (c) (2 pts) Find the particle’s most probable position. (d) (3 pts) What is the probability that the particle would be found in the region (0, 1/a)? 8. Refer to the...
A particular positron is restricted to one dimension and has a wave function given by ψ(x)=...
A particular positron is restricted to one dimension and has a wave function given by ψ(x)= Ax between x = 0 and x = 1.00 nm, and ψ(x) = 0 elsewhere. Assume the normalization constant A is a positive, real constant. (a) What is the value of A (in nm−3/2)? nm−3/2 (b) What is the probability that the particle will be found between x = 0.290 nm and x = 0.415 nm? P = (c) What is the expectation value...
A particle is described by the wave function ψ(x) = b(a2 - x2) for -a ≤...
A particle is described by the wave function ψ(x) = b(a2 - x2) for -a ≤ x ≤ a and ψ(x)=0 for x ≤ -a and x ≥ a , where a and b are positive real constants. (a) Using the normalization condition, find b in terms of a. (b) What is the probability to find the particle at x = 0.33a in a small interval of width 0.01a? (c) What is the probability for the particle to be found...
A particle is described by the wave function ψ(x) = b(a2 - x2) for -a ≤...
A particle is described by the wave function ψ(x) = b(a2 - x2) for -a ≤ x ≤ a and ψ(x)=0 for x ≤ -a and x ≥ a , where a and b are positive real constants. (a) Using the normalization condition, find b in terms of a. (b) What is the probability to find the particle at x = 0.33a in a small interval of width 0.01a? (c) What is the probability for the particle to be found...
For the wave function ψ(x) defined by ψ(x)= A(a-x),x<a ψ(x)=0, x>=a (a) Sketch ψ(x) and calculate...
For the wave function ψ(x) defined by ψ(x)= A(a-x),x<a ψ(x)=0, x>=a (a) Sketch ψ(x) and calculate the normalization constant A. ( b) Using Zettili’s conventions, find its Fourier transform φ(k) and sketch it. (c) Using the ψ(x) and φ(k), make reasonable estimates for ∆x and ∆k. Using p = ħk, check whether your results are compatible with the uncertainty principle.
The wave function of a particle in a one-dimensional box of length L is ψ(x) =...
The wave function of a particle in a one-dimensional box of length L is ψ(x) = A cos (πx/L). Find the probability function for ψ. Find P(0.1L < x < 0.3L) Suppose the length of the box was 0.6 nm and the particle was an electron. Find the uncertainty in the speed of the particle.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT