Question

1) a) Consider a particle of mass m = 22.0 kg revolving around an axis with...

1) a)

Consider a particle of mass m = 22.0 kg revolving around an axis with angular speed ω omega. The perpendicular distance from the particle to the axis is r = 1.75 m . (Figure 1)

Which of the following are units for expressing rotational velocity, commonly denoted by ωωomega?

Check all that apply.

( ) radians per second

( ) degrees per second

( ) meters per second

( ) arc seconds

( ) revolutions per second

1) b)

Now that you have found the velocity of the particle, find its kinetic energy K.

Express your answer numerically, in joules

1) c)

A typical ten-pound car wheel has a moment of inertia of about 0.35kg⋅m^2. The wheel rotates about the axle at a constant angular speed making 50.0 full revolutions in a time interval of 7.00 s .

What is the rotational kinetic energy K of the rotating wheel?

Answer in Joules.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
65A. A hockey puck is given an initial speed of 4.1 m/s. If the coefficient of...
65A. A hockey puck is given an initial speed of 4.1 m/s. If the coefficient of kinetic friction between the puck and the ice is 0.05, how far does the puck slide before coming to rest? Solve this problem using conservation of energy. Express your answer with the appropriate units. 65B. Consider a particle of mass mm = 18.0 kg revolving around an axis with angular speed ω r = 0.500 m . Assume ω = 29.0 rad/s-What is the...
7. A 500 kg car goes around turn in the road that has a radius of...
7. A 500 kg car goes around turn in the road that has a radius of curvature of 5 m. The car is traveling at a constant speed of 10 m/s. (i) What is the centripetal force required to keep the car from sliding out as it goes around the turn? (ii) What must be the coefficient of friction between the tires of the car and the road in order for the car to not sliding as it goes around...
A nitrogen molecule is composed of 2 nitrogen atoms having mass 2.34 x 10^-26 kg separated...
A nitrogen molecule is composed of 2 nitrogen atoms having mass 2.34 x 10^-26 kg separated by 1.30 x 10^-10 meters. At 24 degrees C, the average rotational kinetic energy is 3.05 x10^-21 Joules. Calculate the moment of inertia of a nitrogen molecule about is CoM and the angular velocity in radians per second.
(a) One particle has mass m and a second particle has mass 2m. The second particle...
(a) One particle has mass m and a second particle has mass 2m. The second particle is moving with speed v and the first with speed 2v. How do their kinetic energies compare? (b) A person drops a pebble of mass m1 from a height h, and it hits the floor with kinetic energy K. The person drops another pebble of mass m2 from a height of 2h, and it hits the floor with the same kinetic energy K. How...
A particle with a mass m = 2.00 kg is moving along the x axis under...
A particle with a mass m = 2.00 kg is moving along the x axis under the influence of the potential energy function U(x) = (2.00 J/m2)x2 − 32.0 J. If the particle is released from rest at the position x = 6.40 m, determine the following. (The sign is important. Be sure not to round intermediate calculations.) (a) total mechanical energy of the particle at any position: =_____ J. (b) potential energy of the particle at the position x...
A 40 kg child (point mass) rides on the outer edge of a merry-go-round, which is...
A 40 kg child (point mass) rides on the outer edge of a merry-go-round, which is a large disk of mass 150 kg and radius 1.5 m. The merry-go-round spins with an angular velocity of 12 rpm. What is the merry-go-round’s angular velocity in radians per second (rad/s)? What is the total rotational inertia (moment of inertia) of the child and merry-go-round together? What is the rotational kinetic energy (in joules) of the merry-go-round and child together? What magnitude of...
An electric ceiling fan is rotating about a fixed axis with an initial angular velocity magnitude...
An electric ceiling fan is rotating about a fixed axis with an initial angular velocity magnitude of 0.290 rev/s . The magnitude of the angular acceleration is 0.887 rev/s2 . Both the the angular velocity and angular accleration are directed clockwise. The electric ceiling fan blades form a circle of diameter 0.760 m . a.) Compute the fan's angular velocity magnitude after time 0.209 s has passed. Express your answer numerically in revolutions per second. b.) Through how many revolutions...
A uniform brass solid cylinder has a mass, m = 500 g, and a diameter, D...
A uniform brass solid cylinder has a mass, m = 500 g, and a diameter, D = 6 cm and a length L = 1 m. The cylinder rotates about its axis of rotational symmetry at an angular velocity of 60 radians/s on a frictionless bearing. (a) What is the angular momentum of the cylinder? (b) How much work was required to increase the angular momentum of the cylinder to this value if the cylinder was initially at rest? Once...
An electric ceiling fan is rotating about a fixed axis with an initial angular velocity magnitude...
An electric ceiling fan is rotating about a fixed axis with an initial angular velocity magnitude of 0.300 rev/s. The magnitude of the angular acceleration is 0.902 rev/s2. Both the the angular velocity and angular accleration are directed counterclockwise. The electric ceiling fan blades form a circle of diameter 0.800 m. Compute the fan's angular velocity magnitude after time 0.206 ss has passed. Express your answer numerically in revolutions per second. Through how many revolutions has the blade turned in...
An electric ceiling fan is rotating about a fixed axis with an initial angular velocity magnitude...
An electric ceiling fan is rotating about a fixed axis with an initial angular velocity magnitude of 0.220 rev/s. The magnitude of the angular acceleration is 0.916 rev/s2. Both the angular velocity and angular acceleration are directed counterclockwise. The electric ceiling fan blades form a circle of diameter 0.710 m. Compute the fan's angular velocity magnitude after time 0.192 ss has passed. (Express your answer numerically in revolutions per second.) Through how many revolutions has the blade turned in the...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT