Question

A 10.0-g marble slides to the left at a speed of 0.400 m/s on the frictionless...

A 10.0-g marble slides to the left at a speed of 0.400 m/s on the frictionless horizontal surface and has a head-on collision with a larger 30.0-g marble sliding to the right at a speed of 0.200 m/s.(a)If this collision is perfectly elastic, find the velocity of each marble after the collision.(b)Calculate the change in momentum of each marble. Compare the two values. Do your results make sense? Why?(c)Calculate the change in kinetic energy of each marble. Compare the two values. Do your results make sense? Why?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 41 g marble moving at 2.0 m/s strikes a 21 g marble at rest. Assume...
A 41 g marble moving at 2.0 m/s strikes a 21 g marble at rest. Assume the collision is perfectly elastic and the marbles collide head-on. a:What is the speed of the first marble immediately after the collision? b:What is the speed of the second marble immediately after the collision?
A 50 g marble moving at 2.2 m/s strikes a 23 g marble at rest. Assume...
A 50 g marble moving at 2.2 m/s strikes a 23 g marble at rest. Assume the collision is perfectly elastic and the marbles collide head-on.What is the speed of the first marble immediately after the collision?What is the speed of the second marble immediately after the collision?
A 44.0 g marble moving at 1.90 m/s strikes a 22.0 g marble at rest. Note...
A 44.0 g marble moving at 1.90 m/s strikes a 22.0 g marble at rest. Note that the collision is elastic and that it is a "head-on" collision so all motion is along a line. What is the speed of 44.0 g marble immediately after the collision? What is the speed of 22.0 g marble immediately after the collision?
A 50.0 g marble moving at 2.30 m/s strikes a 21.0 g marble at rest. Note...
A 50.0 g marble moving at 2.30 m/s strikes a 21.0 g marble at rest. Note that the collision is elastic and that it is a "head-on" collision so all motion is along a line. a. What is the speed of 50.0 g marble immediately after the collision? b. What is the speed of 21.0 g marble immediately after the collision?
A marble weighing 100 g is moving 5 m/s It strikes an other marble weighing 40g...
A marble weighing 100 g is moving 5 m/s It strikes an other marble weighing 40g , which is at rest. What is the speed of each marble immediately after the collision? its elastic
Speed amplifier. Block 1 of mass m1 slides along an x axis on a frictionless floor...
Speed amplifier. Block 1 of mass m1 slides along an x axis on a frictionless floor with a speed of Then it undergoes a one-dimensional elastic collision with stationary block 2 of mass m2 = 0.500m1. Next, block 2 undergoes a onedimensional elastic collision with stationary block 3 of mass m3 = 0.500m2. (a) What then is the speed of block 3? (b) Are the kinetic energy, and the momentum of block 3 greater than, less than, or the same...
A block of mass m=1.4 kg, moving on frictionless surface with a speed v1i=5.3 m/s, makes...
A block of mass m=1.4 kg, moving on frictionless surface with a speed v1i=5.3 m/s, makes a perfectly elastic collision with a block of mass M at rest, see the sketch. After the collision, the 1.4 kg block recoils with a speed of v1f=0.3 m/s. What is the speed of block M after the collision? A. v2f=4.8 m/s B. v2f=5.2 m/s C. v2f=3.4 m/s D. v2f=5.0 m/s
A 2.00 kg block slides on a frictionless, horizontal surface with a speed of 5.10 m/s,...
A 2.00 kg block slides on a frictionless, horizontal surface with a speed of 5.10 m/s, until colliding head-on with, and sticking to, a 1.00 kg block at rest. A) Find the speed of the combination after the collision. B) The two blocks continue to slide together until coming in contact with a horizontal spring and eventually brought to rest. If the blocks compress the spring 10.0 cm, find the spring constant of the spring. C) How much work did...
Object 1, with mass m1 and speed 5.3 m/s, slides along on a frictionless ice rink...
Object 1, with mass m1 and speed 5.3 m/s, slides along on a frictionless ice rink and then undergoes a one-dimensional elastic collision with a standstill object 2, with mass m2 = 0.44m1. The two objects then slide into a region where the coefficient of kinetic friction is 0.56; there they stop. How far into that region do (a) object 1 and (b) object 2 slide? (c) Assume the collision is inelastic, and that the objects stick together. How far...
Ball 1, with a mass of 130 g and traveling at 10.0 m/s , collides head...
Ball 1, with a mass of 130 g and traveling at 10.0 m/s , collides head on with ball 2, which has a mass of 350 g and is initially at rest. What are the final velocities of each ball if the collision is perfectly elastic? (vfx)1 (vfx)2
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT