Question

Consider the case of a diving eagle. The eagle is initially moving at a velocity of...

Consider the case of a diving eagle. The eagle is initially moving at a velocity of 16.3m/s[→ π/4 ↑]. It experiences only a constant acceleration due to gravity of 9.8m/s2[↓]. When it reaches the ground it is 616.8 m to the right (→) of where it started and its height has changed from where it initially started.

What is the magnitude of the eagle’s displacement?

Report your answer in meters.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A ball is thrown vertically upwards with an initial velocity of 10 m/s, from a platform...
A ball is thrown vertically upwards with an initial velocity of 10 m/s, from a platform that is at a height of 75 m above the ground. The ball reaches a maximum height and, on the way down, misses the platform and falls all the way to the ground. Take the magnitude of the acceleration due to gravity to be 10 m/s2. (a) What is the velocity of the ball just before it reaches the ground? (b) How many seconds...
A 3 kg cannonball is shot straight up from ground level at a velocity of 30...
A 3 kg cannonball is shot straight up from ground level at a velocity of 30 m/s. For the following questions, neglect air resistance and assume acceleration due to gravity is -10 m/s2. (a) Use the 1D equations of motion to find: i. The maximum height the cannonball reaches ii. The time it takes to reach this height iii. The time it takes to fall back to the ground iv. The speed with which it hits the ground
A rock is thrown straight upward from the top of a building with an initial velocity...
A rock is thrown straight upward from the top of a building with an initial velocity of 15.0 m/s, at an initial height of 45.0 m above the ground. The rock just misses the edge of the building’s roof on its way down. The magnitude of the acceleration due to gravity is 9.79 m/s2 (in Greeley).a. What is the time needed for the rock to reach its maximum height?b. What is its maximum height with respect to the ground?c. How...
A wheel with a weight of 396 N comes off a moving truck and rolls without...
A wheel with a weight of 396 N comes off a moving truck and rolls without slipping along a highway. At the bottom of a hill it is rotating at an angular velocity of 24.2 rad/s . The radius of the wheel is 0.597 m and its moment of inertia about its rotation axis is 0.800 MR2. Friction does work on the wheel as it rolls up the hill to a stop, at a height of h above the bottom...
A wheel with a weight of 395 N comes off a moving truck and rolls without...
A wheel with a weight of 395 N comes off a moving truck and rolls without slipping along a highway. At the bottom of a hill it is rotating at an angular velocity of 26.1 rad/s . The radius of the wheel is 0.651 m and its moment of inertia about its rotation axis is 0.800 MR2. Friction does work on the wheel as it rolls up the hill to a stop, at a height of h above the bottom...
A wheel with a weight of 387 N comes off a moving truck and rolls without...
A wheel with a weight of 387 N comes off a moving truck and rolls without slipping along a highway. At the bottom of a hill it is rotating at an angular velocity of 24.7 rad/s . The radius of the wheel is 0.592 m and its moment of inertia about its rotation axis is 0.800 MR2. Friction does work on the wheel as it rolls up the hill to a stop, at a height of h above the bottom...
A wheel with a weight of 386 N comes off a moving truck and rolls without...
A wheel with a weight of 386 N comes off a moving truck and rolls without slipping along a highway. At the bottom of a hill it is rotating at an angular velocity of 26.0 rad/s . The radius of the wheel is 0.650 m and its moment of inertia about its rotation axis is 0.800 MR2. Friction does work on the wheel as it rolls up the hill to a stop, at a height of h above the bottom...
PROBLEM 10.25 A wheel with a weight of 395 N comes off a moving truck and...
PROBLEM 10.25 A wheel with a weight of 395 N comes off a moving truck and rolls without slipping along a highway. At the bottom of a hill it is rotating at an angular velocity of 23.6 rad/s . The radius of the wheel is 0.580 m and its moment of inertia about its rotation axis is 0.800 MR2. Friction does work on the wheel as it rolls up the hill to a stop, at a height of h above...
1.A boy jumps from rest, straight down from the top of a cliff. He falls halfway...
1.A boy jumps from rest, straight down from the top of a cliff. He falls halfway down to the water below in 0.756 s. How much time passes during his entire trip from the top down to the water? Ignore air resistance. t = ? 2.An astronaut on a distant planet wants to determine its acceleration due to gravity. The astronaut throws a rock straight up with a velocity of +15.7 m/s and measures a time of 10.5 s before...
One dimensional motion describes the changes in the position of an object over time in terms...
One dimensional motion describes the changes in the position of an object over time in terms of its displacement, velocity, and acceleration in one direction. The motion in that direction is independent of the displacement, velocity, and acceleration associated with any of the perpendicular directions. For example, the acceleration due to gravity near the surface of the earth has a value of 9.8 m/s2, downward. This affects the vertical motion of an object but has no effect on the motion...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT