Question

IT takes 250 kj of work and 3.5 s for a car to acelerar from 17.0...

IT takes 250 kj of work and 3.5 s for a car to acelerar from 17.0 m/s yo 38.0 m/s what ITS the force Fll acting on the car?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 1450-kg car moving east at 17.0 m/s collides with a 1880-kg car moving south at...
A 1450-kg car moving east at 17.0 m/s collides with a 1880-kg car moving south at 15.0 m/s, and the two cars connect together. How much kinetic energy was converted to another form during the collision? kJ
A police car is traveling at a velocity of 17.0 m/s due north, when a car...
A police car is traveling at a velocity of 17.0 m/s due north, when a car zooms by at a constant velocity of 44.0 m/s due north. After a reaction time 0.500 s the policeman begins to pursue the speeder with an acceleration of 6.00 m/s^2. Including the reaction time, how long does it take for the police car to catch up with the speeder?
A 1450-kg car moving east at 17.0 m/s collides with a 1850-kg car moving south at...
A 1450-kg car moving east at 17.0 m/s collides with a 1850-kg car moving south at 15.0 m/s, and the two cars connect together. What is the direction of the cars right after the collision? Enter the angle in degrees where positive indicates north of east and negative indicates south of east.
truck with a mass of 1840 kg and moving with a speed of 17.0 m/s rear-ends...
truck with a mass of 1840 kg and moving with a speed of 17.0 m/s rear-ends a 732 kg car stopped at an intersection. The collision is approximately elastic since the car is in neutral, the brakes are off, the metal bumpers line up well and do not get damaged. (a) Calculate the initial momentum of the truck (in kg m/s). kg m/s (b) Calculate the final velocities (in m/s) for the truck and the car. vtf = m/s vcf...
A 2000 kg car starts from rest. After 2 seconds, the car is moving at a...
A 2000 kg car starts from rest. After 2 seconds, the car is moving at a velocity of 9 m/s. There is a retarding friction force of 600N acting on the car. What is the power needed by the car in order to accelerate from rest to that final velocity?
In a performance test, each of two cars takes 9.5 s to accelerate from rest to...
In a performance test, each of two cars takes 9.5 s to accelerate from rest to 28 m/s. Car A has a mass of 1434 kg, and car B has a mass of 1868 kg. Find the net average force that acts on (a) car A and (b) car B during the test.
The energy required to increase the speed of a certain car from 16 m/s to 25...
The energy required to increase the speed of a certain car from 16 m/s to 25 m/s is 200 kJ. What is the mass of the car? At what speed is the car’s kinetic energy equal to 200 kJ?
Question 1 A car is moving at a constant speed of 17.0 m/s around a circular...
Question 1 A car is moving at a constant speed of 17.0 m/s around a circular road with a radius of 34.0 m. Calculate the acceleration of the car. Give your answer with one decimal point. Your Answer: Answer units Question 2 A 1200.0 kg car is moving with a constant speed of 12.0 m/s around a circular road with a radius of 12.0 m. Calculate the friction. Give your answer with one decimal point. Your Answer: Answer units Question...
A 675 kg car accelerates from 54.0 km/h to come to a stop in a distance...
A 675 kg car accelerates from 54.0 km/h to come to a stop in a distance of 175 m.   Determine the net work done on the car Determine the force acting on the car  
1. The work-function of rubidium metal is 208 kJ/mol, which means that it takes 208 kJ...
1. The work-function of rubidium metal is 208 kJ/mol, which means that it takes 208 kJ to remove 1 mol of electrons from the surface of solid rubidium metal. a) What is the maximum wavelength of light needed to cause photoeffect with Rb(s)? (575 nm) b) What color is the light in part a? c) In a different photoeffect experiment with Rb(s), electrons with the de Broglie wavelength of 0.744 nm are generated. What is the wavelength of radiation used...