Question

2. If 725-nm and 650-nm light passes through two slits 0.63 mm apart, how far apart...

2. If 725-nm and 650-nm light passes through two slits 0.63 mm apart, how far apart are the second-order fringes for these two wavelengths on a screen 1.3 m away? Express your answer to two significant figures and include the appropriate units

7. A single slit 1.1 mm wide is illuminated by 420nm light.

What is the width of the central maximum (in cm ) in the diffraction pattern on a screen 3.0 mm away?

Express your answer using two significant figures.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Part A If 755-nm and 630-nm light passes through two slits 0.72 mm apart, how far...
Part A If 755-nm and 630-nm light passes through two slits 0.72 mm apart, how far apart are the second-order fringes for these two wavelengths on a screen 1.0 m away?
5. Light of wavelength 600 nm passes through two slits 0.3 mm apart and forms an...
5. Light of wavelength 600 nm passes through two slits 0.3 mm apart and forms an interference pattern on a screen 2 m away. Calculate the angular width of an interference maximum (in degrees), and calculate the width of a maximum on the screen (in cm).
1. monochromatic light of wavelength 540 nm from a source passes through a slit that is...
1. monochromatic light of wavelength 540 nm from a source passes through a slit that is 0.03mm wide. What is the width of the central bright fringe on the diffraction pattern formed on a screen placed at a distance of 2.00 m away from the slit? 2. Light of wavelength 500 nm is incident on a single slit of width 0.02 mm to produce a diffraction pattern with intensity 4.00×10^-4 W/m^2 at the center of a screen placed far away...
Light of wavelength 492.0 nm passes through a 0.10-mm wide slit and forms a diffraction pattern...
Light of wavelength 492.0 nm passes through a 0.10-mm wide slit and forms a diffraction pattern on a screen 2.6 m away from the slit. Calculate the distance between the first and the third minima on the same side of the central maximum.
Parallel rays of monochromatic light with wavelength 581 nm illuminate two identical slits and produce an...
Parallel rays of monochromatic light with wavelength 581 nm illuminate two identical slits and produce an interference pattern on a screen that is 75.0 cm from the slits. The centers of the slits are 0.640 mm apart and the width of each slit is 0.434 mm. Part A If the intensity at the center of the central maximum is 3.00×10−4 W/m2 , what is the intensity at a point on the screen that is 0.760 mm from the center of...
Red light of wavelength 633 nm from a helium-neon laser passes through a slit 0.350 mm...
Red light of wavelength 633 nm from a helium-neon laser passes through a slit 0.350 mm wide. The diffraction pattern is observed on a screen 2.55 m away. Define the width of a bright fringe as the distance between the minima on either side. a) What is the width of the central bright fringe? b) What is the width of the first bright fringe on either side of the central one?
Light of wavelength 5.1×10−7m passes through two parallel slits and falls on a screen 4.5 m...
Light of wavelength 5.1×10−7m passes through two parallel slits and falls on a screen 4.5 m away. Adjacent bright bands of the interference pattern are 1.5 cm apart. The same two slits are next illuminated by light of a different wavelength, and the fifth-order minimum (m = 5) for this light occurs at the same point on the screen as the fourth-order minimum (m = 4) for the previous light. What is the wavelength of the second source of light?...
1. A slit 1.24 mm wide is illuminated by light of wavelength 530 nm . The...
1. A slit 1.24 mm wide is illuminated by light of wavelength 530 nm . The diffraction pattern is seen on a screen 2.19 m away Find the distance between the first two diffraction minima on the same side of the central maximum in meters. 2. Monochromatic light with wavelength 539 nm fall on a slit with width 0.016 mm wide. The distance from the slit to a screen is 3.18 m. Consider a point on the screen 1.19cm from...
Red light of wavelength 633 nm from a helium-neon laser passes through a slit 0.400 mm...
Red light of wavelength 633 nm from a helium-neon laser passes through a slit 0.400 mm wide. The diffraction pattern is observed on a screen 3.25 m away. Define the width of a bright fringe as the distance between the minima on either side. Part A: What is the width of the central bright fringe? Part B: What is the width of the first bright fringe on either side of the central one?
Light of a wavelength of 550nm passes through a 10 µm wide slits on to a...
Light of a wavelength of 550nm passes through a 10 µm wide slits on to a screen 1m away from the slit. A) How far either side of the central maximum at the 1st, 2nd and 3rd dark regions in the diffraction pattern? B) What is the maximum possible number of bright fringes that could be viewed either side of the central maximum in perfect conditions?