Question

If you apply three different, fixed forces to a body, in any direction on the x-y...

If you apply three different, fixed forces to a body, in any direction on the x-y plane,
a) sketch how to apply these forces to achieve the largest possible resultant force
b)sketch a way to apply these forces to get a 70-N resultant force, pointing in the +x direction
c)Sketch how these forces magnitudes can add to give a zero net force

Forces:
F1=40 N; F2=50 N; F3=60 N

Dont worry about the Part A and B. Just do Part C with the mathematical proof, for example: Fnet = 0.... and also sketch it.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The above free body diagram, the forces are acting on a 4.70 kg object. The x-axis...
The above free body diagram, the forces are acting on a 4.70 kg object. The x-axis is tilted up from the horizontal by 39.5 degrees. The magnitudes of the three forces are given by: Force F1: 77.0 N Force F2: 74.0 N Force F3: 66.0 N. What is the magnitude of the acceleration of the object? https://gyazo.com/a6bdfe7746936d6ad1dec213f4c0fd51
A force table applies three forces to a ring in the center of the table. When...
A force table applies three forces to a ring in the center of the table. When the forces are balanced, the ring is stationary in the center of the table. The net force equation F1+F2+F3=Fnet becomes F1+F2+F3=0 since a stationary object has no net force acting on it. This equation is true for the cartesian components as well: F1x+F2x+F3x=0 F1y+F2y+F3y=0 For each of the three problems below, calculate the force F3 that balances the table with the given F1 and...
Three forces act on an object (at the origin of a rectangular coordinate system). Force one,...
Three forces act on an object (at the origin of a rectangular coordinate system). Force one, F1, has a magnitude of 5.81 N and a direction Theta1 = 77.0 degrees, force two, F2, has a magnitude of 4.88 N and a direction of Theta2, = 156 degrees, and a force three F3, has a magnitude of 4.52 N and a direction of Theta 3 = 289 degrees. add these three vectors using the component method of vector addition. Call the...
A 200 Kg block has three forces applied to it at the same time: F1 =...
A 200 Kg block has three forces applied to it at the same time: F1 = 30.0 N force at 40.0 degrees, F2 =150 N force at 95.0 degrees, & F3 = 75.0 N force at 206.0 degrees. (Angles measured counterclockwise from positive x-direction) There is no gravitational force. a. Find the x & y components of the net force on the block b. Find the magnitutude and direction of the net force. c. The block was initially at rest;...
A 200 kg block has three forces applied to it at the same time: F1 =...
A 200 kg block has three forces applied to it at the same time: F1 = 30.0 N force at 40.0°, F2= 150 N force at 95.0°, and F3 = 75.0 N force at 206.0°. (All angles are measured counterclock- wise from the positive x -direction.) There is no gravitational force.             a.         Find the x and y components of the net force on the block. b.         Find the magnitude and direction of the net force. c.         The block was initially at rest; after...
A 200 kg block has three forces applied to it at the same time: F1 =...
A 200 kg block has three forces applied to it at the same time: F1 = 30.0 N force at 40.0°, F2= 150 N force at 95.0°, and F3 = 75.0 N force at 206.0°. (All angles are measured counterclock- wise from the positive x -direction.) There is no gravitational force.             a.         Find the x and y components of the net force on the block.             b.         Find the magnitude and direction of the net force.             c.         The block was initially at rest; after...
A 200 kg block has three forces applied to it at the same time: F1 =...
A 200 kg block has three forces applied to it at the same time: F1 = 30.0 N force at 40.0°, F2= 150 N force at 95.0°, and F3 = 75.0 N force at 206.0°. (All angles are measured counterclock- wise from the positive x -direction.) There is no gravitational force.             a.         Find the x and y components of the net force on the block.             b.         Find the magnitude and direction of the net force.             c.         The block was initially at rest; after...
PLEASE ANSWER ALL 3 PROBLEMS! (1) Only two horizontal forces act on a 3.0 kg body...
PLEASE ANSWER ALL 3 PROBLEMS! (1) Only two horizontal forces act on a 3.0 kg body that can move over a frictionless floor. One force is 9.0 N, acting due east, and the other is 8.8 N, acting 52° north of west. What is the magnitude of the body's acceleration? (2) Two horizontal forces act on a 1.8 kg chopping block that can slide over a frictionless kitchen counter, which lies in an xy plane. One force is F1 =...
The diagram below shows a block of mass m=2.00kgm=2.00kg on a frictionless horizontal surface, as seen...
The diagram below shows a block of mass m=2.00kgm=2.00kg on a frictionless horizontal surface, as seen from above. Three forces of magnitudes F1=4.00NF1=4.00N, F2=6.00NF2=6.00N, and F3=8.00NF3=8.00N are applied to the block, initially at rest on the surface, at angles shown on the diagram. (Figure 1) In this problem, you will determine the resultant (total) force vector from the combination of the three individual force vectors. All angles should be measured counterclockwise from the positive x axis (i.e., all angles are...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT