Question

Problem Solving: LightSail 2 LightSail 2 was a satellite that was designed to use solar radiation...

Problem Solving: LightSail 2

LightSail 2 was a satellite that was designed to use solar radiation to change its altitude as it circled Earth. The spacecraft had a mass of 5.0kg. It was originally launched by a rocket with its sail closed, and established an orbit at an altitude of 720 km above Earth’s surface. Then it deployed its sail, which had an area of 32m2 . Assume the sail is completely reflective.

1) After a full month of “½ time exposure” (you don’t want the sail turned towards the sun during the part of the orbit in which the change in momentum would slow the craft), what would be the expected change in the craft’s speed? Assume a 30 day month. Also assume all the force goes into a change in speed.

2) What would be its change in orbital altitude (assuming circular orbits)? Hints: o You will need to look up a number of constants about the Sun and Earth. o One thing a sophisticated solution should consider is that the gravitational force from Earth at the satellite’s location is NOT “mg” with “g” as 9.8m/s2 . If you go to this level of sophistication then you will need to use the equation for gravitational force between two spherical masses, i.e. the one with “G,” the universal gravitational constant. Also, if you go to this level of sophistication, your result will probably surprise you. It may be useful to then look at a chart of planetary speeds versus planetary orbits. And discuss. Also note: this would really cause the spacecraft to develop orbits with eccentricity (elliptical characteristics). It had limited success. A lot of “tumbling” occurred but some altitude deviations were observed with enough consistency to be presented in publication.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1.) A solar sail located 1 AU from the Sun, has a cross sectional area of...
1.) A solar sail located 1 AU from the Sun, has a cross sectional area of 1.00 km^2 facing the Sun. The sail has a mirror surface with an albedo of 0.90. Calculate the force exerted on the sail by sunlight. 2.) A shuttle orbits the Earth at an altitude of 300 km. You are attached to the shuttle by a rod of length 1200 m. You and the shuttle orbit at the same angular speed. The combined mass of...
A space probe (mass m) is designed to explore the outer edges of the solar system....
A space probe (mass m) is designed to explore the outer edges of the solar system. It is propelled by a solar sail, which is made of a large circular sheet of highly reflective fabric. Assume the sun radiated with power P. 1. How much could the propulsion be increased if the radius of the sail were three times larger? 2. Jupiter is about five times as far from the sun as the earth. When the probe reaches jupiter, how...
For the purposes of this problem, treat the Earth as a solid, uniform sphere with mass...
For the purposes of this problem, treat the Earth as a solid, uniform sphere with mass 5.97×1024 kg and radius 6.37×106 m, and assume that the Earth's orbit around the sun is circular with a radius of 1.5×1011 m.   (A) What is the angular kinetic energy of the Earth due to its orbit around the sun? (B) What is the magnitude of the Earth's angular momentum due to its orbit around the sun? (C) What is Earth's angular kinetic energy...
The stars, gas and dust in a galaxy rotate about the center of the galaxy. We...
The stars, gas and dust in a galaxy rotate about the center of the galaxy. We would like to know exactly how to describe the rotation of all parts of the galaxy. In other words, we want to know if galaxies rotate like merry-go-rounds, or like planets orbit the Sun, or in some other way. 1. Do points near the center of a merry-go-round complete a full rotation in the same amount of time as points near the outer edge...
Spacecraft orbit Initial orbit radius (km) 7000 Comet properties semi major axis (Au) 1.5 eccentricity 0.2...
Spacecraft orbit Initial orbit radius (km) 7000 Comet properties semi major axis (Au) 1.5 eccentricity 0.2 inclination (deg) 10 argument of perihelion (deg) 60 Comet mass(kg) 3E16 Consider the requirement to transfer a satellite, initially in an elliptical orbit about the Earth that is to be to be placed in orbit about a Comet. You should note from the data that is provided to you that this target Comet orbit is neither circular nor a coplanar orbit with the initial...
2. In 1993 the Galileo spacecraft sent home an image of asteroid “243 Ida” and a...
2. In 1993 the Galileo spacecraft sent home an image of asteroid “243 Ida” and a tiny moon “Dactyl” orbiting the asteroid. Assume that the small moon orbits in a circle with a radius of r = 100 km from the center of the asteroid with an orbital period of T = 27 hours. a) Show and explain how we derived Kepler’s 3rd law in class using Newton’s 2nd Law, the definition for centripetal acceleration, and the equation for the...
Problem 2 a) What is the radiant power of the sun? b) What is the radiant...
Problem 2 a) What is the radiant power of the sun? b) What is the radiant power at the surface of the earth? c) Calculation of the solar constant d) How much energy does the earth absorb? e) Using the equilibrium condition to calculate the earth’s temperature (W/O atmosphere) ? (Give a brief comment regarding your findings) f) Using the equilibrium condition to calculate the earth’s real temperature (W/ atmosphere)? (Give a brief comment regarding your findings) Problem 3 (Very...
9. In 1993 the Galileo spacecraft sent home an image of asteroid “243 Ida” and a...
9. In 1993 the Galileo spacecraft sent home an image of asteroid “243 Ida” and a tiny moon “Dactyl” orbiting the asteroid. Assume that the small moon orbits in a circle with a radius of r = 100 km from the center of the asteroid with an orbital period of T = 27 hours. a) Show and explain how we derived Kepler’s 3rd law in class using Newton’s 2nd Law, the definition for centripetal acceleration, and the equation for the...
1) A net torque always produces a(n) a) force b)angular acceleration c) linear acceleration d) centripetal...
1) A net torque always produces a(n) a) force b)angular acceleration c) linear acceleration d) centripetal acceleration 2)Internal energy is due to a) the motion of atoms. b) the potential energy associated with the relative positions of the atoms. c) both. d) neither. 3)What are the proper units for impulse? a) kg m / s2 b) kg m / s c) N s2 d) N m / s 4) The speed of a rolling object at the bottom of a...
1. The Hypothetical Method Hypothetical reasoning attempts to provide explanations for unexplained phenomena. In using this...
1. The Hypothetical Method Hypothetical reasoning attempts to provide explanations for unexplained phenomena. In using this kind of reasoning, scientists formulate hypotheses—what you might call "rational guesses"—that apply the available information to formulate a possible explanation for something that has been observed. The four stages of the hypothetical method are as follows: 1. A problem or mystery is identified. 2. A hypothesis—a tentative explanation for the problem—is formulated. 3. The implications of the hypothesis are drawn. This means that scientists...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT