Question

A charge of 2mC is placed at the origin. A second charge of 7mC is placed...

A charge of 2mC is placed at the origin. A second charge of 7mC is placed along the x-axis at x=4cm. Where along the x-axis, other than infinitely far away, is the net electric field due to the two charges equal to zero? Show your setup to solve the problem clearly. You may use a graphing calculator or online utility to compute the numerical answer.

Homework Answers

Answer #1

Refering the diagram :

q1 = 2 mC

q2 = 7 mC

x = 4 cm

The point other than infinity where net electric field is zero will be somewhere between them along line joining the charges, since the charges are like.

Let P be that point where net electric field is zero.

Let the distance P from origin is r.

r = distance of P from q1

x-r = distance of P from q2

The direction of Electric field at this point P is opposite and magnitude has to be equal so that they cancels each other.

Therefore,

magnitude of electric field due to q1 = magnitude of electric field due to q2

= 0.014 m

= 1.4cm.

Therefore, at x = 1.4 cm, the net electric field due to the charges is zero. [answer]

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A point charge q1 = 3.90 nC is placed at the origin, and a second point...
A point charge q1 = 3.90 nC is placed at the origin, and a second point charge q2 = -2.90 nC is placed on the x-axis at x=+ 21.0 cm. A third point charge q3 = 2.00 nC is to be placed on the x-axis between q1 and q2. (Take as zero the potential energy of the three charges when they are infinitely far apart.) a- What is the potential energy of the system of the three charges if q3...
A point charge q1 = 3.90 nC is placed at the origin, and a second point...
A point charge q1 = 3.90 nC is placed at the origin, and a second point charge q2 = -3.10 nC is placed on the x-axis at x=+ 20.0 cm . A third point charge q3 = 2.10 nC is to be placed on the x-axis between q1 and q2. (Take as zero the potential energy of the three charges when they are infinitely far apart.) PART A: What is the potential energy of the system of the three charges...
A point charge q1 = 4.05 nC is placed at the origin, and a second point...
A point charge q1 = 4.05 nC is placed at the origin, and a second point charge q2 = -3.05 nC is placed on the x-axis at x=+ 21.0 cm . A third point charge q3= 1.90 nC is to be placed on the x-axis between q1and q2. (Take as zero the potential energy of the three charges when they are infinitely far apart.) PART A - What is the potential energy of the system of the three charges if...
A point charge q1 = 4.10 nC is placed at the origin, and a second point...
A point charge q1 = 4.10 nC is placed at the origin, and a second point charge q2 = -3.10 nC is placed on the x-axis at x=+ 21.0 cm . A third point charge q3 = 1.90 nC is to be placed on the x-axis between q1 and q2. (Take as zero the potential energy of the three charges when they are infinitely far apart.) Part A What is the potential energy of the system of the three charges...
A -4.00 nC point charge is at the origin, and a second +8.00 nC point charge...
A -4.00 nC point charge is at the origin, and a second +8.00 nC point charge is on the x-axis at x = 60 cm. Find the net electric force that the two charges would exert on a proton placed at x = 30cm? At what location would the net electric field due to the two charges be zero?
A doubly‑ionized carbon atom (with charge +2e) is located at the origin of the x‑axis, and...
A doubly‑ionized carbon atom (with charge +2e) is located at the origin of the x‑axis, and an electron (with charge −e) is placed at x=8.01 cm. There is one location along the x‑axis at which the electric field is zero. Give the x‑coordinate of this point in centimeters. x‑coordinate:_________cm Assume that the potential is defined to be zero infinitely far away from the particles. Unlike the electric field, the potential will be zero at multiple points near the particles. Find...
4. A point charge 7.00 uC is placed at the origin and -5.00 uC charge (x=0.3m)...
4. A point charge 7.00 uC is placed at the origin and -5.00 uC charge (x=0.3m) along x-axis. You are asked to determine the following. (a) Electric field due to 7.00 uC on y-axis at the point (2,-4,0) (b) Electric field due to -5.00 uC at the same point. (c) Net electric field and it’s direction due to total charges at the same point. 4. A point charge 7.00 uC is placed at the origin and -5.00 uC charge due...
A positive 5C charge is placed at the origin. A charge of -3 C is placed...
A positive 5C charge is placed at the origin. A charge of -3 C is placed at X = 1m. At what distance from the origin along the X axis is the electric field equal to zero?
A point charge of 5.00 μC is placed at the origin and a second point charge...
A point charge of 5.00 μC is placed at the origin and a second point charge of -3.00 μC is placed at x = 0.450 m. Where along the x-axis can a third charge be placed so that the net force on it is zero? What if both charges are positive? Please answer the bolded part of the question as well!
a point charge of 5 micro coulombs is placed at the origin and a second point...
a point charge of 5 micro coulombs is placed at the origin and a second point charge of -3 micro coulombs is placed at x=0.370m. where along the x axis can a third charge be placed so that the net force on it is zero? for this part I got 1.64m which was marked corrected but the second part asks, what if both charges are positive?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT