Question

A ball of mass 2.5 kg moving east with a speed of 4.2 m/sec collides head-on with a 1 kg ball initially moving at 1.7 m/sec to the west. If the collision is elastic, what will be the speed and direction of each ball after the collision?

Answer #1

A ball of mass 0.440 kg moving east (+x direction) with a speed
of 3.60 m/s collides head-on with a 0.260 kg ball at rest. If the
collision is perfectly elastic, what will be the speed and
direction of each ball after the collision?

A ball of mass 0.484 kg moving east (+xdirection) with
a speed of 3.76 m/s collides head-on with a 0.242 kg ball at rest.
Assume that the collision is perfectly elastic.
A)What is be the speed of the 0.484-kg ball after
the collision? B)What is be the direction of the velocity of the
0.484-kg ball after the collision? C)What is the speed of the
0.242-kg ball after the collision? D)What is the direction of the
velocity of 0.242-kg ball after...

A ball of mass 0.458 kg moving east (+x direction) with a speed
of 3.76 m/s collides head-on with a 0.229 kg ball at rest. Assume
that the collision is perfectly elastic.
1.What is be the speed of the 0.458-kg ball after the collision?
Express your answer to three significant figures and include the
appropriate units.
2.What is be the direction of the velocity of the 0.458-kg ball
after the collision?.
3.What is the speed of the 0.229-kg ball after...

A
cart of mass 2.50 kg moving with a speed of 4.00 m/s collides
head-on with a 1.50 kg cart at rest. If the collision is elastic,
what will be the speed and direction of each cart after the
collision?

A ball with mass M = 5 kg is moving with speed V=10 m/s and
collides with another ball with mass m = 2.5 kg which is initially
stationary. There is no other force such as gravity acting on the
two balls. After the collision, both balls move at angle θ=30
degrees relative to initial direction of motion of the ball with
mass M = 5 kg. a) What are the speeds of the two balls after the
collision? b)...

Ball 1 has a mass of 0.1 kg and is moving with a speed of 2.5
m/s. It collides head-on with ball 2, which has a mass of 0.3 kg
ball and is initially moving toward ball 1 with a speed of 0.75
m/s. Assume a perfectly elastic collision. Calculate the velocities
of the two balls after their collision and the total change in the
momentum of the system. Be careful with your coordinate system in
your math! Give your...

A ball of mass 0.310 kg that is moving with a speed of 5.7 m/s
collides head-on and elastically with another ball initially at
rest. Immediately after the collision, the incoming ball bounces
backward with a speed of 3.1 m/s .
1. Calculate the velocity of the target ball after the
collision.
2. Calculate the mass of the target ball.

A 2.0 kg mass moving to the east at a speed of 4.0m/s collides
head on in a comletely inelastic collision with a 2.0 kg mass
moving west at 2.0m/s. How much kinetic energy is lost during this
collision?

A ball of mass 0.250 kg that is moving with a speed of 5.5 m/s
collides head-on and elastically with another ball initially at
rest. Immediately after the collision, the incoming ball bounces
backward with a speed of 3.1 m/s . Calculate the velocity of the
target ball after the collision. Calculate the mass of the target
ball.

A ball of mass 0.265 kg that is moving with a speed of 5.1 m/s
collides head-on and elastically with another ball initially at
rest. Immediately after the collision, the incoming ball bounces
backward with a speed of 3.5 m/s .
Part A: Calculate the velocity of the target ball after the
collision.
Part B: Calculate the mass of the target ball.

ADVERTISEMENT

Get Answers For Free

Most questions answered within 1 hours.

ADVERTISEMENT

asked 6 minutes ago

asked 38 minutes ago

asked 46 minutes ago

asked 48 minutes ago

asked 50 minutes ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago