Question

1. How did Young do his famous double-slit experiment? A. He used a laser to ensure...

1. How did Young do his famous double-slit experiment?

A. He used a laser to ensure coherence between the two slits.

B. He used a third slit to produce light that was coherent at the two slits.

C. He later used a gas and did not worry about coherence between the slits.

D. He did not do the experiment at all.

2. In slit problems, when do you make the approximation that the rays come out from the slits parallel to each other?

A. When the slit size and spacing is much smaller than L.

B. When the slit size and spacing is much larger than L.

C. When the part of the diffraction pattern is much smaller than L.

D. When the part of the diffraction pattern is much larger than L.

Homework Answers

Answer #1

1)

The rays from the sun passes through a single slit to produce a coherent light, which then passes through another screen with double slits.

Answer is:

B. He used a third slit to produce light that was coherent at the two slits.

2)

When the rays coming out from the slits are parallel to each other, ( ,)

When the distance to the screen is much greater than distance between the slits ,that is

Path difference between the two light rays from the two slits is

Answer is :

A. When the slit size and spacing is much smaller than L.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A double- slit experiment is performed with a coherent (single frequency/wavelength) beam of laser light. 1,...
A double- slit experiment is performed with a coherent (single frequency/wavelength) beam of laser light. 1, suppose that the two slits are separated by a distance D= 0.1 mm; the distance (H) between the center of the pattern and the second ( m=2) bright region is 1.0 cm; and the distance(L) between the screen and the slits is 1.0 m. use the results of this experiment to determine the wavelength of the light. 2. Suppose that the frequency of the...
A physics student demonstrates Young's double-slit experiment using 632.8 nm light from a HeNe laser. The...
A physics student demonstrates Young's double-slit experiment using 632.8 nm light from a HeNe laser. The laser light passes through two narrowly separated slits that have a spacing of d. The light produces an interference pattern on a screen that is 4.20 meters in front of the slits. The spacing between the m=2 and m=3 maxima as seen on the screen is 12.0 cm. Determine the spacing between the slits. For the situation described above, determine the phase difference between...
1. The path length difference for the waves exiting the two slits of the double slit...
1. The path length difference for the waves exiting the two slits of the double slit experiment must be equal to _____ for a bright fringe to appear. one wavelength one-half wavelength an integer number of wavelengths None of the above 2. When white light is used in the double slit experiment, the first order and higher bright fringes appear _____. white as a rainbow red None of the above 3. The fringes of a diffraction grating are narrower and...
The double-slit experiment has red light with wavelength at 500nm where bright fringes are located 2...
The double-slit experiment has red light with wavelength at 500nm where bright fringes are located 2 mm apart near the center of the pattern screen on a large distance. 1. Drawgeometry slits and viewing screen 2. What is the approximate expression for sinO in terms of distance and location on the maxima screen? 3. When it is done with green laser spacing is 6 mm. what is the wavelength? 4. human can see 500 to 700 nm and if white...
A physics instructor wants to produce a double-slit interference pattern large enough for her class to...
A physics instructor wants to produce a double-slit interference pattern large enough for her class to see. For the size of the room, she decides that the distance between successive bright fringes on the screen should be at least 2.60 cm. If the slits have a separation d=0.0165mm, what is the minimum distance from the slits to the screen when 632.8-nm light from a He-Ne laser is used?
A physics instructor wants to produce a double-slit interference pattern large enough for her class to...
A physics instructor wants to produce a double-slit interference pattern large enough for her class to see. For the size of the room, she decides that the distance between successive bright fringes on the screen should be at least 2.40 cm. If the slits have a separation d=0.0175mm, what is the minimum distance from the slits to the screen when 632.8-nm light from a He-Ne laser is used?
I have a laboratory experiment on Young's double slit interference. My instructor asked us how increasing...
I have a laboratory experiment on Young's double slit interference. My instructor asked us how increasing the distance effects and pattern of interference, and how decreasing slit width affects the pattern of interference. I know that if we increase the separation between the slits, we have more interference fringes produced. What I do not know is how decreasing the slit width affects how many interference fringes are produced? I researched the topic and I', getting conflicting answers as some say...
A physics instructor wants to produce a double-slit interference pattern large enough for her class to...
A physics instructor wants to produce a double-slit interference pattern large enough for her class to see. For the size of the room, she decides that the distance between successive bright fringes on the screen should be at least 3.00 cmcm. If the slits have a separation d=0.0155mmd=0.0155mm, what is the minimum distance from the slits to the screen when 632.8-nmnm light from a He-Ne laser is used? Express your answer to three significant figures. Units of cm
(1)(A) You shine an orange laser (587 nm) on a double slit in an experiment you...
(1)(A) You shine an orange laser (587 nm) on a double slit in an experiment you perform in your physics lab. Measuring with a protractor you see that the interference pattern makes the first fringe at 11.0° with the horizontal. What is the separation between the slits? (B)What is the separation between two slits for which 650 nm light has its first minimum at an angle of 31.5°? (C)What is the wavelength of light falling on double slits separated by...
Consider a double slit apparatus that produces several dark minima. The third from the center dark...
Consider a double slit apparatus that produces several dark minima. The third from the center dark minimum is at 45.0° for 635-nm light. a.)What is the separation between the double slits, in meters? b.)What slit separation, in meters, would be needed to produce the same pattern for 1.00-keV protons? c.)What is the problem with extending the results from part (a) to part (b)? a. Protons with that much energy will not diffract. b. Light is a wave, but a proton...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT