Question

Use the Biot-Savart Law (the many-step process) to derive a formula for the magnetic field created...

Use the Biot-Savart Law (the many-step process) to derive a formula for the magnetic field created at [X,0,0], where X > 5 cm, by a current of 2.00 A that flows in a wire as described here. The wire was originally formed in a circle of radius 5 cm lying in the x-y plane with its center at the origin. Then the semicircle on the +x side was bent down so that it lies in the y-z plane on the -z side. The current in the x-y plane goes clockwise as seen from +z.

Homework Answers

Answer #1

A that flows in a wire as described here.

The wire was originally formed in a circle of radius 5 cm lying in the x-y plane with its center at the origin.

Then the semicircle on the +x side was bent down so that it lies in the y-z plane on the -z side.

The current in the x-y plane goes clockwise as seen from +z.

Here,

radius, r = 5 cm = 5 × 10-2 m

Current, I = 2.00 A

Now

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The Biot-Savart Law to derive the equation of the magnetic field of a long, straight wire?
The Biot-Savart Law to derive the equation of the magnetic field of a long, straight wire?
Use the Biot–Savart law to calculate the magnetic field at a distance b from an infinite...
Use the Biot–Savart law to calculate the magnetic field at a distance b from an infinite straight wire carrying current I.
Use the Biot-Savart Law to calculate the magnetic field a distance r away from a long...
Use the Biot-Savart Law to calculate the magnetic field a distance r away from a long current carrying wire.
The net force on a current loop in a uniform magnetic field is zero. But what...
The net force on a current loop in a uniform magnetic field is zero. But what if B?  is not uniform? The figure (Figure 1) shows a square loop of wire that lies in the xy-plane. The loop has corners at (0,0),(0,L),(L,0), and (L,L) and carries a constant current I in the clockwise direction. The magnetic field has no x-component but has both y- and z-components: B? =(B0z/L)j^+(B0y/L)k^, where B0 is a positive constant. Part G Find the magnitude of the...
A single loop of wire of radius 12 cm lies on the x-y plane (imaging it...
A single loop of wire of radius 12 cm lies on the x-y plane (imaging it lying on your page of paper) and carries a current of 1.00 A in the clockwise direction . At the same time, a long straight wire that just touches the rim at the edge of the wire loop carries a 0.808-amp current in the +z direction ("out of the page"). Find the magnetic field at the center of the wire loop. Reminder: the loop...
A magnetic field, strength 3T, has a direction out of the page. A loop of wire...
A magnetic field, strength 3T, has a direction out of the page. A loop of wire sits in the field and on the plane of the page (area vector of loop is out of page). The loop is much smaller than the extent of the field. The magnetic field starts to slowly change at a rate of -0.0001T/s. Looking down on the loop, which statement is correct? A. Magnetic flux out of page decreasing; anti-clockwise current induced in loop B....
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT