Question

A 1.0kg block (a) moving at a speed of 4.0 meters per second runs head on...

A 1.0kg block (a) moving at a speed of 4.0 meters per second runs head on into a 0.5kg block (b) at rest in a perfectly elastic collision. What are the velocities of the blocks after the collision?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 6.0-kg block moving at 9.0 m/s to the right collides head-on with another 12.0-kg block...
A 6.0-kg block moving at 9.0 m/s to the right collides head-on with another 12.0-kg block moving at 3.0 m/s to the left. What are the velocities of the two blocks after the collision if the collision is elastic?
In space, a 4.0kg metal ball moving 30m/s has a head-on collision with a stationary 1.0kg...
In space, a 4.0kg metal ball moving 30m/s has a head-on collision with a stationary 1.0kg second ball. After the collision, the second ball is traveling at 40m/s. A) What is the velocity of the first ball? B) Is this an elastic collision? (show. no credit without proof)
A 1.0kg object initially moving with a velocity of 3.0m/s to the right makes an elastic...
A 1.0kg object initially moving with a velocity of 3.0m/s to the right makes an elastic head-on collision with a 1.5kg object initially moving to the left at 2.0m/s. a) What are the final velocities of the two objects after the collision? b) Using the given initial data for the two-object system as well as your results, show that the total kinetic energy is conserved for this elastic collision.
A 0.250-kg ice puck, moving east with a speed of 5.26 m/s , has a head-on...
A 0.250-kg ice puck, moving east with a speed of 5.26 m/s , has a head-on collision with a 0.950-kg puck initially at rest. Assume that the collision is perfectly elastic. part A What is the speed of the 0.250-kgkg puck after the collision? part B What is the speed of the 0.950-kgkg puck after the collision?
A 0.495-kg hockey puck, moving east with a speed of 4.20 m/s , has a head-on...
A 0.495-kg hockey puck, moving east with a speed of 4.20 m/s , has a head-on collision with a 0.850-kg puck initially at rest. a) Assuming a perfectly elastic collision, what will be the speed (magnitude of the velocity) of each object after the collision?
A 0.250-kg ice puck, moving east with a speed of 5.48 m/s, has a head-on collision...
A 0.250-kg ice puck, moving east with a speed of 5.48 m/s, has a head-on collision with a 0.900-kg puck initially at rest. Assume that the collision is perfectly elastic. What is the speed of the 0.900-kg puck after the collision?
A 0.450-kg ice puck, moving east with a speed of 5.14 m/sm/s , has a head-on...
A 0.450-kg ice puck, moving east with a speed of 5.14 m/sm/s , has a head-on collision with a 0.990-kg puck initially at rest. Assume that the collision is perfectly elastic. What is the speed of the 0.450-kg puck after the collision? Can I please get some help for this question
A 0.250-kg ice puck, moving east with a speed of 5.58 m/s, has a head-on collision...
A 0.250-kg ice puck, moving east with a speed of 5.58 m/s, has a head-on collision with a 0.900-kg puck initially at rest. Assume that the collision is perfectly elastic. a. What is the speed of the 0.250-kg puck after the collision? b. What is the direction of the velocity of the 0.250-kg puck after the collision? c. What is the direction of the velocity of the 0.250-kg puck after the collision? d. What is the direction of the velocity...
A block of mass m=1.4 kg, moving on frictionless surface with a speed v1i=5.3 m/s, makes...
A block of mass m=1.4 kg, moving on frictionless surface with a speed v1i=5.3 m/s, makes a perfectly elastic collision with a block of mass M at rest, see the sketch. After the collision, the 1.4 kg block recoils with a speed of v1f=0.3 m/s. What is the speed of block M after the collision? A. v2f=4.8 m/s B. v2f=5.2 m/s C. v2f=3.4 m/s D. v2f=5.0 m/s
A 0.250-kg ice puck, moving east with a speed of 5.14 m/s , has a head-on...
A 0.250-kg ice puck, moving east with a speed of 5.14 m/s , has a head-on collision with a 0.990-kg puck initially at rest. Assume that the collision is perfectly elastic. What is the speed of the 0.250-kg puck after the collision? What is the direction of the velocity of the 0.250-kg puck after the collision? to the east to the west What is the speed of the 0.990-kg puck after the collision? What is the direction of the velocity...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT