Question

What is the moment of inertia of a 1 m rod rotated about the 10 cm...

What is the moment of inertia of a 1 m rod rotated about the 10 cm position? express as a multiplier of ml^2. l=length

Homework Answers

Answer #1

For a uniform rod, center of mass lies at its mid-point.

Moment of inertia about its center of mass(i.e.,mid-point)=1/12 ml^2, where m is mass of the rod and l is its length.

Also,according to parallel axis theorem, if moment of inertia about center of mass is I and distance between a given parallel axis and center of mass is d, then moment of inertia about the given axis=I+md^2.

Now, for a 1 m rod, position of center of mass= 1/2=0.5 m.

So, distance between given axis(at 10 cm=0.1 m) and center of mass= 0.5-0.1=0.4 m = 0.4 l

So, moment of inertia about this axis = 1/12 ml^2 + m*(0.4l)^2 = 1/12 ml^2 + 0.16 ml^2 = 0.243 ml^2.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
find the moment of inertia of a uniform rod (rotated about one end) of mass M...
find the moment of inertia of a uniform rod (rotated about one end) of mass M and length L starting from the definition of moment of inertia PLEASE INCLUDE ANY RELEVANT CALCULUS CONCEPTS
Find the expression for the moment of inertia of a uniform rod of mass M, and...
Find the expression for the moment of inertia of a uniform rod of mass M, and length L, rotated about one of its ends. Intergral you'll need to perform is given below I = integral of ((r^2)(dm))
(a) Find the moment of inertia, I, for a rod of length L and mass M...
(a) Find the moment of inertia, I, for a rod of length L and mass M for an arbitrary axis that is at distance of x from its one edge. (b) Now find the moment of inertia when the axis is at one edge. (c) Find the moment of inertia when the axis is in the middle. Please leave detailed steps
Moment of Inertia To find the moment of inertia of different objects and to observe the...
Moment of Inertia To find the moment of inertia of different objects and to observe the changes in angular acceleration relative to changing moments of inertia. To also learn how to use calipers in making precise measurements The momentum of inertia of an object is calculated as I=∑mr^2 If the object in question rotates around a central point, then it can be considered a "point mass", and its moment of inertia is simply,  I=mr^2 where r is from the central point...
5) Consider a uniform thin rod with length L. I_1 is the moment of inertia of...
5) Consider a uniform thin rod with length L. I_1 is the moment of inertia of this rod about an axis perpendicular to the rod a quarter length from its center. I_2 is the moment of inertia of the rod with respect to an axis perpendicular to it through its center. which relationship between the two inertia's is correct? a) I_1 = I_2. b) I_1 > I_2. c) I_1 < I_2. d) they could be the same or different depending...
1. Find the moment of inertia of a stick of length 4 m and mass 10...
1. Find the moment of inertia of a stick of length 4 m and mass 10 kg that is rotated about an axis that is 30 % from the left end of the stick. Hint do the integration of r^2 dm 2. A 123 kg merry go round with a 5 m radius rotates on a vertical axis. If I push at the edge with a force of 188 N, find the angular acceleration. The moment of inertia of disk...
A rod of length l=1.1m and mass M= 5.5kg joins two particles with masses m1 =4.8kg...
A rod of length l=1.1m and mass M= 5.5kg joins two particles with masses m1 =4.8kg and m2 = 2.8kg, at its ends. The combination rotates in the xy-plane about a pivot through the center of the rod with the linear speed of the masses of v= 3.5 m/s. (Moment of inertia of a uniform rod rotating about its center of mass I= 1 12 M l2 ) angularmomentum a) Calculate the total moment of inertia of the system I...
A rod of length l=2.2m and mass M= 9.7kg joins two particles with masses m1 =12.9kg...
A rod of length l=2.2m and mass M= 9.7kg joins two particles with masses m1 =12.9kg and m2 = 5.0kg, at its ends. The combination rotates in the xy-plane about a pivot through the center of the rod with the linear speed of the masses of v= 12.9 m/s. (Moment of inertia of a uniform rod rotating about its center of mass I= 1 12 M l2 ) a) Calculate the total moment of inertia of the system I =...
A rod of length l=0.8m and mass M= 3.7kg joins two particles with masses m1 =4.5kg...
A rod of length l=0.8m and mass M= 3.7kg joins two particles with masses m1 =4.5kg and m2 = 2.8kg, at its ends. The combination rotates in the xy-plane about a pivot through the center of the rod with the linear speed of the masses of v= 3.5 m/s. (Moment of inertia of a uniform rod rotating about its center of mass I= 1 12 M l2 a) Calculate the total moment of inertia of the system b) What is...
A thin, 1-dimensional, uniform rod of mass M and length L lies on the x axis...
A thin, 1-dimensional, uniform rod of mass M and length L lies on the x axis with one end at the origin. (a) Find its moment of inertia tensor about the origin. (b) Find the moment of inertia tensor if the rod’s center is located at the origin.