Question

The wheels on a car have a radius of 0.250 m. The car starts from rest...

The wheels on a car have a radius of 0.250 m. The car starts from rest and the driver accelerates the car at a constant rate and reaches a speed of 47.0 miles per hour in 7.0 s. a) Calculate the angular acceleration of the wheels of the car. b) The driver applies the brakes for 5.0 s which decelerates the car at a rate of 15.0 rad/s2. Calculate the total distance the car traveled during the entire 12.0 s trip. c) What is required for the tires to rotate rather than slip?

Homework Answers

Answer #1

Dear student,
Find this solution, and RATE IT ,If you find it is helpful .your rating is very important to me.If any incorrectness ,kindly let me know I will rectify them soon.
Thanks for asking ..

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
a car starts from rest and accelerates uniformly, until it has traveled 15km and acquired a...
a car starts from rest and accelerates uniformly, until it has traveled 15km and acquired a velocity of 30m/s. the car then moves at this constant velocity of 30 m/s for 15 minutes. the driver then applied the brakes and the car stopped after 5 minutes. find the acceleration during the last part of the trip: a1= The acceleration during the last part of the trip: a3= The total distance traveled during the whole trip: dtot=
A cyclist starts from rest and pedals such that the wheels of his bike have a...
A cyclist starts from rest and pedals such that the wheels of his bike have a constant angular acceleration. After 12 s, the wheels have made 40 rev. What is the angular velocity of the wheels after 12 s in rad/s ? rad/s Tries 0/3 What is the angular acceleration of the wheels in rad/s2 ? rad/s2 Tries 0/3 If the radius of the wheel is 33 cm, and the wheel rolls without slipping, how far has the cyclist (in...
a car starts from rest and travels 8.0s with a uniform acceleration of +2.0 m/s^2. the...
a car starts from rest and travels 8.0s with a uniform acceleration of +2.0 m/s^2. the driver then applies the brakes, causing a uniform acceleration of -3.0 m/s^2. if the brakes are applied for 5.0s, determine each of the following. a. how fast is the car going at the end of the braking period? b. how far has the car gone?
A car initially traveling at 29.2 m/s undergoes a constant negative acceleration of magnitude 2.00 m/s2...
A car initially traveling at 29.2 m/s undergoes a constant negative acceleration of magnitude 2.00 m/s2 after its brakes are applied (a) How many revolutions does each tire make before the car comes to a stop, assuming the car does not skid and the tires have radii of 0.300 m? (b) What is the angular speed of the wheels when the car has traveled half the total distance? rad/s
A car initially traveling at 25.7 m/s undergoes a constant negative acceleration of magnitude 1.80 m/s2...
A car initially traveling at 25.7 m/s undergoes a constant negative acceleration of magnitude 1.80 m/s2 after its brakes are applied. (a) How many revolutions does each tire make before the car comes to a stop, assuming the car does not skid and the tires have radii of 0.320 m? rev (b) What is the angular speed of the wheels when the car has traveled half the total distance? rad/s
A car starts from rest and travels for 7.5 s with a uniform acceleration of +2.8...
A car starts from rest and travels for 7.5 s with a uniform acceleration of +2.8 m/s2. The driver then applies the brakes, causing a uniform acceleration of −2.5 m/s2.If the brakes are applied for 1.0 s, determine each of the following. (a) How fast is the car going at the end of the braking period? m/s (b) How far has the car gone? m
A car starts from rest and travels for 8.0 s with a uniform acceleration of +1.8...
A car starts from rest and travels for 8.0 s with a uniform acceleration of +1.8 m/s2. The driver then applies the brakes, causing a uniform acceleration of -2.0 m/s2. If the brakes are applied for 3.0 s, determine each of the following. (a) How fast is the car going at the end of the braking period? (b) How far has it gone?
A flywheel with a radius of 0.500 m starts from rest and accelerates with a constant...
A flywheel with a radius of 0.500 m starts from rest and accelerates with a constant angular acceleration of 0.800 rad/s2 . 1) Compute the magnitude of the resultant acceleration of a point on its rim after it has turned through 60.0. (m/s^2) 2) Compute the magnitude of the resultant acceleration of a point on its rim after it has turned through 120.0. (m/s^2)
A car starts from rest at a stop sign. It accelerates at 2.0 m/s2 for 7.0...
A car starts from rest at a stop sign. It accelerates at 2.0 m/s2 for 7.0 seconds, coasts For 2.7 s, and then slows down at a rate of 1.5 m/s2 for the next stop sign. How far apart are the stop signs?
A discus thrower (arm length 0.9 m) starts from rest and begins to rotate counterclockwise with...
A discus thrower (arm length 0.9 m) starts from rest and begins to rotate counterclockwise with a constant angular acceleration of +2.7 rad/s2. (a) How many radians of angle does it take for the discus thrower's angular velocity to reach +7.0 rad/s? rads (b) How long does this take? seconds At this time (from part b), please find the following quantities: (c) the linear speed of the discus: m/s (d) the size of the discus's tangential acceleration: m/s2 the size...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT