Question

Suppose a star the size of our Sun (r=7.0*105 km), but with mass 6.0 times as...

Suppose a star the size of our Sun (r=7.0*105 km), but with mass 6.0 times as great, were rotating at a speed of 1.0 revolution every 10 days. If it were to undergo gravitational collapse to a neutron star of radius 10 km, losing 2/3 of its mass in the process, what would its rotation period be in μs? Assume the star is a uniform sphere at all times. Assume also that the thrown-off mass carries off no angular momentum. Note. The moment of inertia of uniform (solid) sphere is given by I=2mr2/5, where m is the mass of the sphere and r is the sphere radius. (1 μs = 10-6s).

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Suppose a star the size of our Sun, but of mass 8.0 times as great, was...
Suppose a star the size of our Sun, but of mass 8.0 times as great, was rotating at a speed of 1.0 revolution every 21 days. If it were to undergo gravitational collapse to a neutron star of radius 20 km, losing three quarters of its mass in the process, what would its rotation speed be? Assume that the star is a uniform sphere at all times and that the lost mass carries off no angular momentum. Answer in rev/day
Suppose a star the size of our Sun, but with mass 5.0 times as great, were...
Suppose a star the size of our Sun, but with mass 5.0 times as great, were rotating at a speed of 1.0 revolution every 15 days. If it were to undergo gravitational collapse to a neutron star of radius 14 km , losing three-quarters of its mass in the process, what would its rotation speed be? Assume also that the thrown- off mass carries off either Part A) No angular momentum Part B) its proportional share three-quarters of the initial...
Suppose a star the size of our Sun, but with mass 8.0 times as great, were...
Suppose a star the size of our Sun, but with mass 8.0 times as great, were rotating at a speed of 1.0 revolution every 8.0 days. If it were to undergo gravitational collapse to a neutron star of radius 11 km , losing three-quarters of its mass in the process, what would its rotation speed be? Assume also that the thrown- off mass carries off either a) no angular momentum b)its proportional share three-quarters of the initial angular momentum Express...
Astronomers detect stars that are rotating extremely rapidly, known as neutron stars. A neutron star is...
Astronomers detect stars that are rotating extremely rapidly, known as neutron stars. A neutron star is believed to form from the inner core of a larder star that collapsed, under its own gravitation, to a star of very small radius and very high density. Before collapse, suppose the ore of such a star is the size of our Sun (R = 7105km)with mass 2.0 times as great as the Sun, and is rotating at a frequency of 1.0 revolution every...
Neutron Star Physics Under some circumstances, an ordinary star can undergo gravitational collapse into an extremely...
Neutron Star Physics Under some circumstances, an ordinary star can undergo gravitational collapse into an extremely dense object made mostly of neutrons. This type of star is called a "neutron star". A neutron star has a mass density roughly 1014 times larger than that of ordinary solid matter. Suppose we represent an ordinary star as a uniform solid rigid sphere, both before and after the collapse. The original star's initial radius is 7.0 x 105 km (comparable to the size...
Consider a neutron star with a mass equal to 0.9 times the mass of the Sun,...
Consider a neutron star with a mass equal to 0.9 times the mass of the Sun, a radius of 15 km, and a rotation period of 1.3 s. What is the speed of a point on the equator of this neutron star? What is gg at the surface of this neutron star? A stationary 1.0 kg mass has a weight of 9.8 N on Earth. What would be its weight on the neutron star? How many revolutions per second are...
One particular neutron star has a mass equal to 3.00 times the mass of the sun....
One particular neutron star has a mass equal to 3.00 times the mass of the sun. You may consider this neutron star to be a sphere with a uniform density of 3.30×1017 kg/m3 !! ......compare that to the density of lead for example, at 1×104 kg/m3 . (A neutron star is created when a massive star runs out of hydrogen fuel and collapses at the end of its life. The neutron star is a very dense and spins rapidly). If...
Suppose a star with the Sun’s mass and radius (the radius of the Sun is 6.96×108...
Suppose a star with the Sun’s mass and radius (the radius of the Sun is 6.96×108 m) is rotating with a period of 25 days. The star first blows off its outer layers and loses mass and angular momentum before the actual collapse, thereby reducing its radius while maintaining the same density. Then, with a mass that is 59 % of the Sun’s mass, it collapses to a white dwarf with a rotation period is 131 s. A) What is...
The star Tau Ceti's mass is 1.6 ✕ 1030 kg, its radius is 5.5 ✕ 105...
The star Tau Ceti's mass is 1.6 ✕ 1030 kg, its radius is 5.5 ✕ 105 km, and it has a rotational period of approximately 34 days. If Tau Ceti should collapse into a white dwarf of radius 9.7 ✕ 103 km, what would its period (in s) be if no mass were ejected and a sphere of uniform density can model Tau Ceti both before and after? _______ s
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT