Question

Consider two blocks on a horizontal plane where block one has a small mass (m) with...

Consider two blocks on a horizontal plane where block one has a small mass (m) with some velocity (v) while block two has a large mass (M) and a spring with a spring constant of (k). Have block one collide with the spring of block two and stick so that the two blocks are allowed to oscillate. Ignore friction.

1) Find the internal energy change in the system

2) Now assume block two is instead an un-moving wall so that when the first box collides it creates a simple harmonic oscillator, find the kinetic and potential energy of the harmonic oscillator if the system oscillates at an angular frequency equal to (k/m)0.5

3) Find the increase in temperature (delta T) in the system by finding the mean KE of the oscillator (using part 2 over one vibrational period T=(2*pi)/(angular frequency)) deviding the energy among the number of atoms in the first block and equating this mean kinetic energy to 1/2*(Boltzmann's constant)*(delta T). Use v=1 m/s and m=1 kg if needed.

Homework Answers

Answer #1

if you found this helpful, give a thumbs up.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1) a) A block of mass m slides down an inclined plane starting from rest. If...
1) a) A block of mass m slides down an inclined plane starting from rest. If the surface is inclined an angle theta above the horizontal, and the block reaches a speed V after covering a distance D along the incline, what is the coefficient of kinetic friction? b) at a distance D1 (still on the incline), the block comes to an instantaneous standstill against a spring with spring constant k. How far back up does the block? Why do...
A horizontal block spring oscillator of mass 15 kg on a frictionless table and spring constant...
A horizontal block spring oscillator of mass 15 kg on a frictionless table and spring constant k is pulled 3 m to the right and released; after 0.1 seconds the block just passes the equilibrium position. a) Find at t= 1 second the angular frequency, frequency, period, position, velocity, acceleration, and force on the block. b) Draw the velocity function of the block over two periods.
Tobias they toddler got his blocks out to play his small block is m=0.894 kg but...
Tobias they toddler got his blocks out to play his small block is m=0.894 kg but Rachel Tobias sister vibrates the table back and forth horizontally on the frictionless table with the equation x=7.02cm cos 9.5 rad/st due to a spring 1. Find. the period T and the frequency of the motion 2. spring constant of the spring? 3. location of Tobias block at the time being 8.94 seconds 4. the velocity of Tobias block at th time being 5.2...
As you know, a common example of a harmonic oscillator is a mass attached to a...
As you know, a common example of a harmonic oscillator is a mass attached to a spring. In this problem, we will consider a horizontally moving block attached to a spring. Note that, since the gravitational potential energy is not changing in this case, it can be excluded from the calculations. For such a system, the potential energy is stored in the spring and is given by U=12kx2, where k is the force constant of the spring and x is...
Consider two particles of mass m connected by a spring with rest length L with potential...
Consider two particles of mass m connected by a spring with rest length L with potential energy given by V(x1, x2) = ½ k (x1 – x2 – L)2. Show that the total wavefunction for this system is the product of two terms, one term is the solution for free particle motion of the center of mass for a particle with the total mass and the other term is simple harmonic (vibrational) motion of the relative displacement x1-x2 of the...
Two blocks are held together, with a compressed spring between them, on a horizontal frictionless surface....
Two blocks are held together, with a compressed spring between them, on a horizontal frictionless surface. When the system is released, the spring pushes the blocks apart and they then move off in opposite directions. The spring remains behind, and you can assume that all of its energy is transformed to the kinetic energy of the blocks. Find the kinetic energy of block A HomeworkUnanswered The mass of block A is 3.00 times the mass of block B, and the...
A bullet with mass 25 g and initial horizontal velocity 320 m/s strikes a block of...
A bullet with mass 25 g and initial horizontal velocity 320 m/s strikes a block of mass 2 kg that rests on a frictionless surface and is attached to one end of a spring. The bullet becomes embedded in the block. The other end of the spring is attached to the wall. The impact compress the spring a maximum distance of 25 cm . After the impact, the block moves in simple harmonic motion. 1. What is the frequency of...
A block of mass m = 1.5 kg is attached to a massless, frictionless vertical spring...
A block of mass m = 1.5 kg is attached to a massless, frictionless vertical spring and stretches the spring by an amount y0 = 0.15m a)find the spring constant k of the spring b) the block is then pulled down by an additional 0.05m below its equilibrium position and is released. express the position of the block during its resulting simple harmonic motion using the equation y(t) = ymcos(wt+@). c) find the maximum acceleration fo the block A(m). d)...
A simple harmonic oscillator is made up of a mass-spring system, with mass of 2.71 kg...
A simple harmonic oscillator is made up of a mass-spring system, with mass of 2.71 kg and a spring constant k = 198 N/m. At time t=1.15 s, the position and velocity of the block are x = 0.137 m and v = 3.547 m/s. What is the velocity of the oscillation at t=0? Be sure to include the minus sign for negative velocity.
A small cart of mass 0.8 kg is attached to one end of a massless, horizontal...
A small cart of mass 0.8 kg is attached to one end of a massless, horizontal spring as shown in the figure. The spring constant is 600 N/m. The spring is stretched by 0.05 m and the cart is released from rest. The cart then oscillates back and forth undergoing simple harmonic motion. Friction and air resistance are negligible. a) (5 pts) Find the angular frequency ω of the motion. b) (5 pts) How long does it take for the...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT