Question

The wavelength of a photon that has the same momentum as an electron moving with a...

The wavelength of a photon that has the same momentum as an electron moving with a speed of 1444 m/s is λ= nm.

Homework Answers

Answer #1

Here,the speed of a moving electron is 1444 m/sec.Which is very less in comparision to speed of light(c) which is 3*10^8 m/sec.So we can use classical approach of momentum and kinetic energy here.So we use De-Broglie realtion with the momentum of electron.

(If you are satisfied with the answer plz like it and give your cruical suggestions)

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A photon with wavelength of 0.1110 nm collides with a free electron that is initially at...
A photon with wavelength of 0.1110 nm collides with a free electron that is initially at rest. After the collision the wavelength is 0.1135 nm . Part A What is the kinetic energy of the electron after the collision? K = ??? J Part B What is its speed? v = ??? m/s Part C If the electron is suddenly stopped (for example, in a solid target), all of its kinetic energy is used to create a photon. What is...
A photon has a wavelength that is the same as the de Broglie wavelength of an...
A photon has a wavelength that is the same as the de Broglie wavelength of an electron. (a) How does the momentum of the photon, compare to the momentum of the electron, (b)How does the energy of the photon, compare to the total energy of the electron
2A. Determine the momentum of a photon with a wavelength of 450 nm. 2B. Determine the...
2A. Determine the momentum of a photon with a wavelength of 450 nm. 2B. Determine the energy of that same photon. 2C. Calculate the mass in kg of a particle traveling at 2.5x104 m/s that has the same frequency as this photon? 2D. Use the info in 2C. to determine the relativistic energy of this particle?
a) A photon with a wavelength of 3.00x10-7 m strikes an electron at rest. The scattered...
a) A photon with a wavelength of 3.00x10-7 m strikes an electron at rest. The scattered photon has a wavelength of 4.00x10-7 m. Calculate the KE of the electron. b) Light with a wavelength of 425 nm falls on a photoelectric surface that has a work function of 2.00 eV. What is the maximum speed of the ejected electron? c) A photon of wavelength 43 nm is incident upon a metal in a photoelectric apparatus. A stopping voltage of 21...
A photon with wavelength λ of 10^−4 nm collides with an electron at rest and rebounds...
A photon with wavelength λ of 10^−4 nm collides with an electron at rest and rebounds at a 180-degree angle. What is the electron's final momentum after the collision? (Write answer in eV/c)
Find the wavelength (in nm) of a photon whose energy is 6.70 × 10-19 J. The...
Find the wavelength (in nm) of a photon whose energy is 6.70 × 10-19 J. The maximum wavelength that an electromagnetic wave can have and still eject electrons from a metal surface is 507 nm. What is the work function W0 of this metal? Express your answer in electron volts. In the Compton effect, an X-ray photon of wavelength 0.16 nm is incident on a stationary electron. Upon collision with the electron, the scattered X-ray photon continues to travel in...
A(n) x-ray photon has a wavelength of 7.80 ✕ 10−9 cm. Find the momentum, the frequency,...
A(n) x-ray photon has a wavelength of 7.80 ✕ 10−9 cm. Find the momentum, the frequency, and the energy of the photon in electron volts. (a) the momentum kg · m/s (b) the frequency Hz (c) the energy of the photon in electron volts eV Im having trouble. please help
In the Compton effect, a 0.133 nm photon strikes a free electron in a head-on collision...
In the Compton effect, a 0.133 nm photon strikes a free electron in a head-on collision and knocks it into the forward direction. The rebounding photon recoils directly backward. Use conservation of (relativistic) energy and momentum to determine the kinetic energy of the electron. Use the equation p=E/c=hf/c=h/λ. K =    eV Determine the wavelength of the recoiling photon. λ′ =    nm
Compton Scattering.A photon of wavelength λcollides elastically with a free electron (initially at rest) of mass...
Compton Scattering.A photon of wavelength λcollides elastically with a free electron (initially at rest) of mass m. If the photon scatters at an angle φfrom its original direction of travel, use conservation of relativistic linear momentum and conservation of relativistic energy to derive a mathematical expression for the scattered photon’s wavelength λ’.
a) What is the DeBroglie wavelength of an electron moving at 2.8x10^6 m/s? b) What is...
a) What is the DeBroglie wavelength of an electron moving at 2.8x10^6 m/s? b) What is the energy of a photon with the same wavelength? c) What is the DeBroglie wavelength of a proton with the same kinetic energy as the photon in the previous part?