Question

An object with a height of 8 cm is placed 10 cm in front of a...

An object with a height of 8 cm is placed 10 cm in front of a converging lens with a focal lenth of 30 cm.

a) Is the resulting image real or virtual?

b) Draw a ray tracing diagram including all three principle rays.

c) Using the thin-lens equation and the definition of magnification, determine both the image distance and the height of the image. Express your anser in cm, and include any algebraic signs. S’= ____________________________ H’ = ____________________________

Homework Answers

Answer #1

PLEASE DO NOT FORGET TO GIVE IT A THUMBS UP !!!!!

THANK YOU !!!!

STAY SAFE !!!

______________________________________________________________

a)

as object distance < focal length, image will be virtual and upright.

_________________________________

b)

__________________________________________

(c)

thin lens equation

1/f = 1/s + 1/s'

where s is object distance and s' is image distance

so,

1/s' = 1/f - 1/s

1/s' = 1/30 - 1/10

1/s' = -0.066

s' = - 15 cm

negative sign means image is on the same side as the object

and

magnification, m = - s' / s = - (-15 / 10) = 1.5

so,

H' = H * m

H' = 8 * 1.5

H' = 12 cm

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A) An object is placed 26 cm in front of a converging lens of focal length...
A) An object is placed 26 cm in front of a converging lens of focal length 5 cm. Another converging lens of focal length 10 cm is placed 20 cm behind the first lens. 1) Find the position of the final image with respect to the second lens.  ____cm 2) Find the magnification of the final image. _____ B) A diverging lens of focal length −12cm projects the image of an object onto a wall. What is the object distance if...
Principal Ray Diagrams and Equations 1.) An object is 6 cm in front of a convex...
Principal Ray Diagrams and Equations 1.) An object is 6 cm in front of a convex mirror with a focal length of 10 cm. a.) Use ray tracing alone to determine the location and magnification of the image. Is the image upright or inverted? Is it real or virtual? b.) Use equations alone to determine the location and magnification of the image. Is the image upright or inverted? Is it real or virtual? 2.) A 2.0-cm-tall object is 20 cm...
An object is placed 5cm in front of a diverging lens of focal length 25 cm....
An object is placed 5cm in front of a diverging lens of focal length 25 cm. A second converging lens of focal length 15cm is positioned 20 cm to the right of the first lens. What is the final image distance? What is the magnification of the final image? Is it upright of inverted? Real or virtual?
3: An object of height 2.6 cm is placed 26 cm in front of a diverging...
3: An object of height 2.6 cm is placed 26 cm in front of a diverging lens of focal length 15 cm. Behind the diverging lens, and 11 cm from it, there is a converging lens of the same focal length. (a) Find the location of the final image, in centimeters beyond the converging lens. s''= (b) What is the magnification of the final image? Include its sign to indicate its orientation with respect to the object. mtotal=
3 parts thx in advanced! 1.An object is placed 18.0 cm in front of a thin...
3 parts thx in advanced! 1.An object is placed 18.0 cm in front of a thin lens of focal length +6.0 cm. Find the image distance. Give your answer in cm, but enter only the numerical part in the box. 2. An object is placed 24.0 cm in front of a thin lens of focal length +5.0 cm. What is the lateral magnification? Recall that the magnification is a unitless ratio. 3. For the preceding two parts of this problem,...
A converging lens of focal length f1 = +22.5 cm is placed at a distance d...
A converging lens of focal length f1 = +22.5 cm is placed at a distance d = 60.0 cm to the left of a diverging lens of focal length f2 = −30.0 cm. An object is placed on the common optical axis of the two lenses with its base 45.0 cm to the left of the converging lens. (The thin-lens approximation may be assumed to hold.) (a) Calculate the location of the final image and its overall magnification with respect...
An object is placed 78.1 cm in front of a diverging lens with a focal length...
An object is placed 78.1 cm in front of a diverging lens with a focal length of magnitude 37.3 cm. A converging lens having a focal length of magnitude 27.49 cm is placed 105.3 cm past the first lens. Where is the final image formed. Is this image Real or Virtual. Inverted or Non-Inverted? Also calculate the magnification.
An object of height 6.00 cm is placed 24.0 cm to the left of a converging...
An object of height 6.00 cm is placed 24.0 cm to the left of a converging lens with a focal length of 10.5 cm. Determine the image location in cm, the magnification, and the image height in cm. (a) the image location in cm (b) the magnification (c) the image height in cm (d) Is the image real or virtual? (e) Is the image upright or inverted?
An object 6 cm high is placed 12 cm in front of a 4 cm focal...
An object 6 cm high is placed 12 cm in front of a 4 cm focal length convex lens. (a) Draw a ray diagram to produce an image. (b) Calculate the image location and magnification using the lens equation. (c) How close is your image position and height to your calculated value (% difference)?
A 1.0 cm tall object is 2.0 cm in front of a converging lens with a...
A 1.0 cm tall object is 2.0 cm in front of a converging lens with a focal length of 3.0 cm. A. Determine the image position and height by using ray tracing to find image B. Calculate the image position and height
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT