Question

An 10 g ice cube at -13˚C is put into a Thermos flask containing 115 cm3...

An 10 g ice cube at -13˚C is put into a Thermos flask containing 115 cm3 of water at 20˚C. By how much has the entropy of the cube-water system changed when a final equilibrium state is reached? The specific heat of ice is 2200 J/kg K and that of liquid water is 4187 J/kg K. The heat of fusion of water is 333 × 103 J/kg.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
An 11 g ice cube at -12˚C is put into a Thermos flask containing 145 cm3...
An 11 g ice cube at -12˚C is put into a Thermos flask containing 145 cm3 of water at 24˚C. By how much has the entropy of the cube-water system changed when a final equilibrium state is reached? The specific heat of ice is 2200 J/kg K and that of liquid water is 4187 J/kg K. The heat of fusion of water is 333 × 103 J/kg. and A 6.0 g ice cube at -21˚C is put into a Thermos...
An insulated Thermos contains 115 g of water at 78.7 ˚C. You put in a 10.0...
An insulated Thermos contains 115 g of water at 78.7 ˚C. You put in a 10.0 g ice cube at 0.00 ˚C to form a system of ice + original water. The specific heat of liquid water is 4190 J/kg•K; and the heat of fusion of water is 333 kJ/kg. What is the net entropy change of the system from then until the system reaches the final (equilibrium) temperature?
An insulated Thermos contains 113 g of water at 77.3 ˚C. You put in a 10.3...
An insulated Thermos contains 113 g of water at 77.3 ˚C. You put in a 10.3 g ice cube at 0.00 ˚C to form a system of ice + original water. The specific heat of liquid water is 4190 J/kg•K; and the heat of fusion of water is 333 kJ/kg. What is the net entropy change of the system from then until the system reaches the final (equilibrium) temperature?
An insulated Thermos contains 119 g of water at 75.1 ˚C. You put in a 9.16...
An insulated Thermos contains 119 g of water at 75.1 ˚C. You put in a 9.16 g ice cube at 0.00 ˚C to form a system of ice + original water. The specific heat of liquid water is 4190 J/kg•K; and the heat of fusion of water is 333 kJ/kg. What is the net entropy change of the system from then until the system reaches the final (equilibrium) temperature?
An insulated Thermos contains 141 g of water at 72.1 ˚C. You put in a 6.60...
An insulated Thermos contains 141 g of water at 72.1 ˚C. You put in a 6.60 g ice cube at 0.00 ˚C to form a system of ice + original water. The specific heat of liquid water is 4190 J/kg•K; and the heat of fusion of water is 333 kJ/kg. What is the net entropy change of the system from then until the system reaches the final (equilibrium) temperature?
You decide to put a 40.0 g ice cube at -10.0°C into a well insulated coffee...
You decide to put a 40.0 g ice cube at -10.0°C into a well insulated coffee cup (of negligible heat capacity) containing  of water at 5.0°C. When equilibrium is reached, how much of the ice will have melted? The specific heat of ice is 2090 J/kg ∙ K, that of water is 4186 J/kg ∙ K, and the latent heat of fusion of water is 33.5 × 104 J/kg.
A = 13 B = 27 A (10.0+A) g ice cube at -15.0oC is placed in...
A = 13 B = 27 A (10.0+A) g ice cube at -15.0oC is placed in (125+B) g of water at 48.0oC. Find the final temperature of the system when equilibrium is reached. Ignore the heat capacity of the container and assume this is in a calorimeter, i.e. the system is thermally insulated from the surroundings. Give your answer inoC with 3 significant figures. Specific heat of ice: 2.090 J/g K Specific heat of water: 4.186 J/g K Latent heat...
A 25 g ice cube at -15.0oC is placed in 169 g of water at 48.0oC....
A 25 g ice cube at -15.0oC is placed in 169 g of water at 48.0oC. Find the final temperature of the system when equilibrium is reached. Ignore the heat capacity of the container and assume this is in a calorimeter, i.e. the system is thermally insulated from the surroundings. Give your answer in oC with 3 significant figures. Specific heat of ice: 2.090 J/g K Specific heat of water: 4.186 J/g K Latent heat of fusion for water: 333...
A 16 g ice cube at -15.0oC is placed in 140 g of water at 48.0oC....
A 16 g ice cube at -15.0oC is placed in 140 g of water at 48.0oC. Find the final temperature of the system when equilibrium is reached. Ignore the heat capacity of the container and assume this is in a calorimeter, i.e. the system is thermally insulated from the surroundings. Give your answer in oC with 3 significant figures. Specific heat of ice: 2.090 J/g K Specific heat of water: 4.186 J/g K Latent heat of fusion for water: 333...
A (18) g ice cube at –15.0°C is placed in (126) g of water at 48.0...
A (18) g ice cube at –15.0°C is placed in (126) g of water at 48.0 degreesC. Find the final temperature of the system when equilibrium is reached. Ignore the heat capacity of the container and assume this is in a calorimeter, i.e. the system is thermally insulated from the surroundings. Give your answer in degreesC with 3 significant figures. Specific heat of ice: 2.090 J/(g∙ oC) Specific heat of water: 4.186 J/(g∙ oC) Latent heat of fusion for water:...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT