Question

A mass of 600 KG moving at 65 m/s begins breaking and skids on a slick...

A mass of 600 KG moving at 65 m/s begins breaking and skids on a slick pavement. Draw  the free body diagram for the car. if the car comes to a stop in 140 m what is the coefficient of kinetic friction between the tires and the road?

Homework Answers

Answer #1

we need to find deceleration of the car.

The final velocity (v) is zero.

The initial velocity (u) is 65 m/s

so,

v2 - u2 = 2ad

02 - 652 = 2 * a * 140

a = - 15.089 m/s2

--------

equating forces in horizontal direction

Fnet = ma

0 - Fk = 600 * - 15.089

Fk = 9053.57 N

this is the force of kinetic friction

Now, we know

Fk = uk N

Fk = uk mg

uk = 9053.57 / 600 * 9.8

uk = 1.54

(Don't be surprised if value is more than 1, the pavement is oily ( slick) , so it is possible)

-----------------------------------------------------------------------------

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Bob is driving his car at 20 m/s down a hill with a slope of 5...
Bob is driving his car at 20 m/s down a hill with a slope of 5 degrees. When a deer suddenly jumps out of the woods onto the road, he slams on the brakes, and the car skids to a stop. The mass of the car is 1500 kg, and the coefficient of kinetic friction between the tires and the road is µk = 0.816. a) (3 points) Draw a free-body diagram for the car. b) (3 points) Determine the...
A car of mass 1500 kg is moving on a horizontal and straight road at 20...
A car of mass 1500 kg is moving on a horizontal and straight road at 20 m/s. At some point the driver hits the brakes and the car comes to a stop after it had moved a distance of 36m while the brakes were on. What is the coefficient of the kinetic friction between the wheels of the car and the road
A car of mass 1500 kg is moving on a horizontal and straight road at 20...
A car of mass 1500 kg is moving on a horizontal and straight road at 20 m/s. At some point the driver hits the brakes and the car comes to a stop after it had moved a distance of 36m while the brakes were on. What is the coefficient of the kinetic friction between the wheels of the car and the road?
A 3500-kg car traveling at 65 km/h skids and hits a wall 3 seconds later. The...
A 3500-kg car traveling at 65 km/h skids and hits a wall 3 seconds later. The coefficient of friction between the tires and the road is 0.10. What is the speed of the car in m/s when it hits the wall? A. 15.11 B. 12.64 C. 6.29 D. 0.14 E. 4.88 F. 8.58
A 2300 kg car moving at an initial speed of 25 m/s along a horizontal road...
A 2300 kg car moving at an initial speed of 25 m/s along a horizontal road skids to a stop in 50 m. (Note: When stopping without skidding and using conventional brakes, 100 percent of the kinetic energy is dissipated by friction within the brakes. With regenerative braking, such as that used in hybrid vehicles, only 70 percent of the kinetic energy is dissipated.) (a) Find the energy dissipated by friction. 718750 Incorrect: Your answer is incorrect. kJ (b) Find...
Traveling at 40.2 m/s, a driver applies the brakes to his fast-moving car and skids out...
Traveling at 40.2 m/s, a driver applies the brakes to his fast-moving car and skids out of control on a wet concrete horizontal road. The 2000 kg car is headed directly toward a student waiting to catch a bus to campus who is standing 58.0 m down the road. Luckily, Superman is flying overhead and surveys the situation. Knowing that the coefficient of kinetic friction between rubber and rough wet concrete is .800, he determines that friction alone will not...
A car skids 18 m on a level road while trying to stop before hitting a...
A car skids 18 m on a level road while trying to stop before hitting a standing car in front of it. The two cars barely touch. The coefficient of kinetic friction between the first car and the road is 0.80. Determine the initial speed of the skidding car.
The coefficient of kinetic friction between rubber tires and wet pavement is 0.50. The brakes are...
The coefficient of kinetic friction between rubber tires and wet pavement is 0.50. The brakes are applied to a 1750kg car travelling 27.8m/s and the car skids to a stop. What is the size and direction of the force of friction that the road exerts on the car? What would be the size and direction of the acceleration on the car? How far would the car travel before stopping? If the tires of the car did not skid, the coefficient...
A car traveling at 17.2 m/s skids to a stop in 188 m from the point...
A car traveling at 17.2 m/s skids to a stop in 188 m from the point where the brakes were applied. In what distance would the car have stopped had it been going 58.5 m/s , if tires and road condition were unchanged (i.e. if the acceleration were the same)?
An 8500 kg truck moving at 11 m/s collides with a 1500 kg car at rest....
An 8500 kg truck moving at 11 m/s collides with a 1500 kg car at rest. The coefficient of friction is .53. a) How fast is the truck going after the collision? b) How long until the truck comes to a stop? c) How far does it travel before coming to a stop?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT