Question

A person stands at the center of a turntable, holding his arms extended horizontally with a...

A person stands at the center of a turntable, holding his arms extended horizontally with a 1.5 kg dumbbell in each hand. He is set rotation about a vertical axis, making one revolution in 2 seconds. Find the new angular velocity if he pulls the dumbbells in to his middle. His moment of inertia (without dumbbells) is 3 kgm2 when his arms are out stretched, dropping to 2.2 kgm2 when his hands are at his middle. The dumbbells are 1 m from the axis initially and 0.2 m from it when moved to his middle.

Homework Answers

Answer #1

Conservation of Angular momentum

L1 = L2

L1 is initial angular momentum of the system and
L2 is final angular momentum of the system

angular momentum is L = I*W

I is moment of inertial of the system


L1 = L2

I1*W1 = I2*W2 ==> W2 = I1*W1/I2

I1 = I1p+I1d , I2 = I2p+I2d

here I1 = 3+2*1.5*1^2 = 6 kgm^2
and I2 = 2.2+2*1.5*0.2^2 = 2.32 kg m^2
initial angular velocity is W1 = 1/2 = 0.5 rev/s

final angular velocity is W2 = ?

from conservation of angular momentum

   L1 = L2
I1*W1 = I2*W2 ==> W2 = I1*W1/I2

   W2 = 6*0.5/(2.32) rev/s

   W2 = 1.24 rev/s
the angular velocity increases

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A boy stands at the center of a turntable, which has a moment of inertia of...
A boy stands at the center of a turntable, which has a moment of inertia of 1.50 kg·m2 about an axis through its center. The boy's moment of inertia about the same axis, when he holds his arms in, is 1.10 kg·m2; when he sticks his arms straight out, his moment of inertia is 1.80 kg·m2. He and the turntable are initially rotating at a rate of 2.00 rad/s, with his arms extended.             a.         He pulls in his arms. What is...
A student sits on a rotating chair holding two 6.0kg masses. When his arms are extended...
A student sits on a rotating chair holding two 6.0kg masses. When his arms are extended horizontally, the masses are 1.0 m from the axis of rotation, and he rotates with an angular speed of 0.75 rad/s. The moment of inertia of the students plus stool is 6.0 kg m2 and is assumed to be constant. The student pulls the masses horizontally to a 0.30m from the axis of rotation. (a) Find the new angular speed of the student.   (b)...
In this example we see how a system can have constant angular momentum without having a...
In this example we see how a system can have constant angular momentum without having a constant angular velocity! A physics professor stands at the center of a turntable, holding his arms extended horizontally, with a 5.0 kg dumbbell in each hand (Figure 1). He is set rotating about a vertical axis, making one revolution in 2.0 s. His moment of inertia (without the dumbbells) is 3.4 kg⋅m2 when his arms are outstretched, and drops to 1.8 kg⋅m2 when his...
A student sits on a freely rotating stool holding two dumbbells, each of mass 2.91 kg...
A student sits on a freely rotating stool holding two dumbbells, each of mass 2.91 kg (see figure below). When his arms are extended horizontally (Figure a), the dumbbells are 1.03 m from the axis of rotation and the student rotates with an angular speed of 0.758 rad/s. The moment of inertia of the student plus stool is 2.61 kg · m2 and is assumed to be constant. The student pulls the dumbbells inward horizontally to a position 0.297 m...
A student sits on a rotating stool holding two 2.7-kg objects. When his arms are extended...
A student sits on a rotating stool holding two 2.7-kg objects. When his arms are extended horizontally, the objects are 1.0 m from the axis of rotation and he rotates with an angular speed of 0.75 rad/s. The moment of inertia of the student plus stool is 3.0 kg · m2 and is assumed to be constant. The student then pulls in the objects horizontally to 0.43 m from the rotation axis. (a) Find the new angular speed of the...
A student sits on a rotating stool holding two 2.8-kg objects. When his arms are extended...
A student sits on a rotating stool holding two 2.8-kg objects. When his arms are extended horizontally, the objects are 1.0 m from the axis of rotation and he rotates with an angular speed of 0.75 rad/s. The moment of inertia of the student plus stool is 3.0 kg · m2 and is assumed to be constant. The student then pulls in the objects horizontally to 0.50 m from the rotation axis. (a) Find the new angular speed of the...
A student sits on a rotating stool holding two 3.8-kg objects. When his arms are extended...
A student sits on a rotating stool holding two 3.8-kg objects. When his arms are extended horizontally, the objects are 1.0 m from the axis of rotation and he rotates with an angular speed of 0.75 rad/s. The moment of inertia of the student plus stool is 3.0 kg · m2 and is assumed to be constant. The student then pulls in the objects horizontally to 0.33 m from the rotation axis. (a) Find the new angular speed of the...
A student sits on a rotating stool holding two 3.5-kg objects. When his arms are extended...
A student sits on a rotating stool holding two 3.5-kg objects. When his arms are extended horizontally, the objects are 1.0 m from the axis of rotation and he rotates with an angular speed of 0.75 rad/s. The moment of inertia of the student plus stool is 3.0 kg · m2 and is assumed to be constant. The student then pulls in the objects horizontally to 0.23 m from the rotation axis. (a) Find the new angular speed of the...
A student sits on a freely rotating stool holding two dumbbells, each of mass 2.98 kg....
A student sits on a freely rotating stool holding two dumbbells, each of mass 2.98 kg. When his arms are extended horizontally, the dumbbells are 0.94 m from the axis of rotation and the student rotates with an angular speed of 0.752 rad/s. The moment of inertia of the student plus stool is 2.79 kg · m2 and is assumed to be constant. The student pulls the dumbbells inward horizontally to a position 0.308 m from the rotation axis. (a)...
In this example we see how a system can have constant angular momentum without having a...
In this example we see how a system can have constant angular momentum without having a constant angular velocity! A physics professor stands at the center of a turntable, holding his arms extended horizontally, with a 5.0 kgkg dumbbell in each hand (Figure 1). He is set rotating about a vertical axis, making one revolution in 2.0 ss. His moment of inertia (without the dumbbells) is 3.4 kg⋅m2kg⋅m2 when his arms are outstretched, and drops to 1.8 kg⋅m2kg⋅m2 when his...