Question

A proton that has a mass m and is moving at 280 m/s in the +...

A proton that has a mass m and is moving at 280 m/s in the + direction undergoes a head-on elastic collision with a stationary boron nucleus of mass 10m. Find the velocities of the proton and the boron nucleus after the collision.

vp =  m/s
vboron =  m/s

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A proton that has a mass m and is moving at 360 m/s in the +...
A proton that has a mass m and is moving at 360 m/s in the + direction undergoes a head-on elastic collision with a stationary boron nucleus of mass 10m. Find the velocities of the proton and the boron nucleus after the collision. vp =  m/s vboron =  m/s
A proton (mass 1.67 × 10 −27kg) is moving at 1.30 ×10 −6m/s directly toward a...
A proton (mass 1.67 × 10 −27kg) is moving at 1.30 ×10 −6m/s directly toward a stationary helium nucleus (mass 6.64 × 10 −27kg). a)After a head-on elastic collision, what is the proton's velocity?. b)After a head-on elastic collision, what is the helium's velocity?
A 1.10-kg ball, moving to the right at a velocity of +1.34 m/s on a frictionless...
A 1.10-kg ball, moving to the right at a velocity of +1.34 m/s on a frictionless table, collides head-on with a stationary 6.90-kg ball. Find the final velocities of (a) the 1.10-kg ball and of (b) the 6.90-kg ball if the collision is elastic. (c) Find the magnitude and direction of the final velocity of the two balls if the collision is completely inelastic.
A 1.40-kg ball, moving to the right at a velocity of +2.87 m/s on a frictionless...
A 1.40-kg ball, moving to the right at a velocity of +2.87 m/s on a frictionless table, collides head-on with a stationary 6.70-kg ball. Find the final velocities of (a) the 1.40-kg ball and of (b) the 6.70-kg ball if the collision is elastic. (c) Find the magnitude and direction of the final velocity of the two balls if the collision is completely inelastic.
A 1.70-kg ball, moving to the right at a velocity of +1.51 m/s on a frictionless...
A 1.70-kg ball, moving to the right at a velocity of +1.51 m/s on a frictionless table, collides head-on with a stationary 8.10-kg ball. Find the final velocities of (a) the 1.70-kg ball and of (b) the 8.10-kg ball if the collision is elastic. (c) Find the magnitude and direction of the final velocity of the two balls if the collision is completely inelastic.
A 4.30-kg ball, moving to the right at a velocity of +3.01 m/s on a frictionless...
A 4.30-kg ball, moving to the right at a velocity of +3.01 m/s on a frictionless table, collides head-on with a stationary 8.50-kg ball. Find the final velocities of (a) the 4.30-kg ball and of (b) the 8.50-kg ball if the collision is elastic. (c) Find the magnitude and direction of the final velocity of the two balls if the collision is completely inelastic.
A 4.80-kg ball, moving to the right at a velocity of +1.26 m/s on a frictionless...
A 4.80-kg ball, moving to the right at a velocity of +1.26 m/s on a frictionless table, collides head-on with a stationary 8.20-kg ball. Find the final velocities of (a) the 4.80-kg ball and of (b) the 8.20-kg ball if the collision is elastic. (c)Find the magnitude and direction of the final velocity of the two balls if the collision is completely inelastic.
A 1.00-kg ball, moving to the right at a velocity of +1.35 m/s on a frictionless...
A 1.00-kg ball, moving to the right at a velocity of +1.35 m/s on a frictionless table, collides head-on with a stationary 8.00-kg ball. Find the final velocities of (a) the 1.00-kg ball and of (b) the 8.00-kg ball if the collision is elastic. (c) Find the magnitude and direction of the final velocity of the two balls if the collision is completely inelastic.
A 4.80-kg ball, moving to the right at a velocity of +3.36 m/s on a frictionless...
A 4.80-kg ball, moving to the right at a velocity of +3.36 m/s on a frictionless table, collides head-on with a stationary 6.10-kg ball. Find the final velocities of (a) the 4.80-kg ball and of (b) the 6.10-kg ball if the collision is elastic. (c) Find the magnitude and direction of the final velocity of the two balls if the collision is completely inelastic. (a) Number Units
A ball of mass 0.205 kg has a velocity of 1.47 m/s; a ball of mass...
A ball of mass 0.205 kg has a velocity of 1.47 m/s; a ball of mass 0.309 kg has a velocity of -0.396 m/s.They meet in a head-on elastic collision. (a) Find their velocities after the collision. (first ball) (second ball) (b) Find the velocity of their center of mass before and after the collision. (before) (after)