Question

A particle of mass m is incident form the right on a wall of infinite thickness...

A particle of mass m is incident form the right on a wall of infinite thickness and which may be represented by a potential energy V. Calculate the reflection probability for E>V. For electrons incident on a metal surface V=10eV.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A particle is in the ground state of an infinite square well. The potential wall at...
A particle is in the ground state of an infinite square well. The potential wall at x = L suddenly (i.e., instantaneously) moves to x = 3L. such that the well is now three times its original size. (a) Let t = 0 be at the instant of the sudden change in the potential well. What is ψ(x, 0)? (b) If you measure the energy of the particle in the new well, what are the possible energies? (c) Estimate the...
Consider a particle mass M in an infinite square well of width (W) with the initial...
Consider a particle mass M in an infinite square well of width (W) with the initial state: |?〉=?(|?)〉+7?|?-〉) What are the possible results of an energy measurement and the probability of each?
Particles of mass m are incident from the positive x axis (moving to the left) onto...
Particles of mass m are incident from the positive x axis (moving to the left) onto a potential energy step at x=0. At the step the potential energy drops from the positive value U_0 for all x>0 to the value 0 for all x<0. The energy of the particles is greater than U_0. A) Sketch the potential energy U(x) for this system. B) How would the wavelength of a particle change in the x<0 region compared to the x>0 region?...
Exercise 3. Consider a particle with mass m in a two-dimensional infinite well of length L,...
Exercise 3. Consider a particle with mass m in a two-dimensional infinite well of length L, x, y ∈ [0, L]. There is a weak potential in the well given by V (x, y) = V0L2δ(x − x0)δ(y − y0) . Evaluate the first order correction to the energy of the ground state.    Evaluate the first order corrections to the energy of the first excited states for x0 =y0 = L/4. For the first excited states, find the points...
Consider a spinless particle of mass m, which is moving in a one-dimensional infinite potential well...
Consider a spinless particle of mass m, which is moving in a one-dimensional infinite potential well with walls at x = 0 and x = a. If and are given in Heisenberg picture, how can we find them in Schrodinger and interaction picture?
An infinite square well has a particle of mass m that is in a state |├...
An infinite square well has a particle of mass m that is in a state |├ ψ(0)〉=A(├ |1〉-├ |2〉+├ i|3〉) at time t=0. The kets ├ |1〉,├ |2〉, and ├ |3〉 correspond to the first three energy eigenstates of the infinite square well. Find the normalized state vector. What are the energy measurement outcomes and their probabilities? What is the energy expectation value? What is the normalized state vector at time t? What are the energy measurement outcomes and their...
A beam of electrons, each with energy E=0.1V0 , is incident on a potential step with...
A beam of electrons, each with energy E=0.1V0 , is incident on a potential step with V0 = 2 eV. This is of the order of magnitude of the work function for electrons at the surface of metals. Calculate and graph (at least 5 points) the relative probability |Ψ2|^2 of particles penetrating the step up to a distance x = 10-9 m, or roughly five atomic diameters. (Hint: assume A=1.)
Consider a particle of mass m and energy E approaching the step potential? V (x)= 0,...
Consider a particle of mass m and energy E approaching the step potential? V (x)= 0, x<0    V(x)=V0, x>0 from negative values of x. Consider the case E > V0. a) Classically, what is the probability of re?ection? b) Quantum mechanically, what is the probability of re?ection? Express your result in terms of the ratio V0/E. What is the probability of re?ection if E = 2V0?
Reflection from a Step with E < V0: A beam of electrons, each with energy E=0.1V0...
Reflection from a Step with E < V0: A beam of electrons, each with energy E=0.1V0 , is incident on a potential step with V0 = 2 eV. This is of the order of magnitude of the work function for electrons at the surface of metals. Calculate and graph (at least 5 points) the relative probability |Ψ#|# of particles penetrating the step up to a distance x = 10-9 m, or roughly five atomic diameters. (Hint: assume A=1.)
1. Electrons will readily tunnel out of the surface of a metal when a sufficiently high...
1. Electrons will readily tunnel out of the surface of a metal when a sufficiently high electric field E is applied to the surface. Suppose that for a certain metal the fermi energy is 5.0 eV, and work function is 4.0 eV. Estimate the probability that an incident electron will tunnel out if E = 1 x 109 V/m .
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT