Question

You and a friend are running some physics experiments to test the wave nature of light....

You and a friend are running some physics experiments to test the wave nature of light. To do so, you cut two very narrow slits on a black plastic sheet, separated by 0.150 mm, and shine coherent light from a laser pointer through them. According to the label on your friend’s laser pointer, it emits coherent light at 570 nm, while your laser pointer doesn’t have any information about the wavelength of light emitted. You then observe their respective interference patterns on a distant screen 4.00 m from the slits and you notice that your laser is creating a narrower pattern than your friend’s. If the distance on the screen between the first-order bright fringes of the two lasers is 3.20 mm, what is the wavelength of light emitted by your laser?

Homework Answers

Answer #1

given
slit seperation, d = 0.15 mm = 0.15*10^-3 m
lamda1 = 570 nm
distance between slits and screen, R = 4.00 m

As your laser is creating a narrower pattern than your friend’s, your lase wavelength must be smaller than your friends' laser wavelength.

let lamda2 is the wavelength of your laser.

y1_max(lamda1) - y1_max*(lamda2) = lmada1*R/d - lmada2*R/d


3.20*10^-3 = (lamda1 - lamda2)*R/d

3.20*10^-3*d/R = lamda1 - lamda2

==> lamda2 = lamda1 - 3.20*10^-3*d/(R)

= 570*10^-9 - 3.2*10^-3*0.15*10^-3/4

= 4.50*10^-7 m (or) 450 nm <<<<<<<------------------Answer

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A red laser from the physics lab is marked as producing 632.8-nm light. When light from...
A red laser from the physics lab is marked as producing 632.8-nm light. When light from this laser falls on two closely spaced slits, an interference pattern formed on a wall several meters away has bright red fringes spaced 5.50 mm apart near the center of the pattern. When the laser is replaced by a small laser pointer, the fringes are 5.68 mm apart. Part A What is the wavelength of light produced by the pointer? Express your answer to...
I rate best answer :) ± Fringes from Different Interfering Wavelengths Coherent light with wavelength 592...
I rate best answer :) ± Fringes from Different Interfering Wavelengths Coherent light with wavelength 592 nm passes through two very narrow slits, and the interference pattern is observed on a screen a distance of 3.00 m from the slits. The first-order bright fringe is a distance of 4.84 mm from the center of the central bright fringe. Part A For what wavelength of light will the first-order dark fringe (the first dark fringe next to a central maximum) be...
Two narrow slits are used to produce a double-slit interference pattern with monochromatic light. The slits...
Two narrow slits are used to produce a double-slit interference pattern with monochromatic light. The slits are separated by 8 mm, and the interference pattern is projected onto a screen 7 m away from the slits. The central bright fringe is at a certain spot on the screen. Using a ruler with one end placed at the central fringe, you move along the ruler passing by two more bright fringes and find that the next bright fringe is 23.5 mm...
ASK YOUR TEACHER Light Emitting Diodes (LEDs) are semiconductor devices that emit light at specific wavelengths...
ASK YOUR TEACHER Light Emitting Diodes (LEDs) are semiconductor devices that emit light at specific wavelengths without emitting at any other wavelengths. LEDs can be used to create lasers that are very compact since they are a solid state device. A pair of narrow, parallel slits separated by 0.265 mm are illuminated by a green LED laser (λ = 546.1 nm). The interference pattern is observed on a screen 1.60 m from the plane of the parallel slits. (a) Calculate...
You are given a visible laser of wavelength λ to study interferences of light in the...
You are given a visible laser of wavelength λ to study interferences of light in the lab. Consider the 5 situations below. Treat each question independently 1.In air, you place a screen with two slits, separated by 0.86 mm, in front of the laser of wavelength 507.9 nm. You know that you will see an interference pattern if you place an observation screen some distance away. Determine what the distance between the plane of the fringes and the observation screen...
1. Which of the following is not a condition for constructive interference when light waves from...
1. Which of the following is not a condition for constructive interference when light waves from two sources meet at a point? a. the path difference is one wavelength b. the intensity is maximum c. a bright fringe is formed d. a crest meets a crest e. All of the choices are conditions for constructive interference 2. Coherent light of wavelength 500 nm is incident on two parallel slits separated by 0.08 mm. On a very distant and large screen,...
Coherent light that contains two wavelengths, 660 nm and 470 nm passes through two narrow slits...
Coherent light that contains two wavelengths, 660 nm and 470 nm passes through two narrow slits with a separation of 0.26 mm. An interference pattern is observed on a screen 5.3 m from the slits. (a) Sketch the setup (b) What is the distance between the first order bright fringe for each wavelength on the screen ? (c) What is the distance between the first dark fringe for each wavelength on the screen ? (d) If electrons with the same...
A double-slit experiment produces an interference pattern on a screen 2.8 m away from slits. Light...
A double-slit experiment produces an interference pattern on a screen 2.8 m away from slits. Light of wavelength λ= 460 nm  falls on the slits from a distant source. The distance between adjacent bright fringes is 6.2 mm. A) Find the distance between the two slits B) Determine the distance to the 6th order dark fringe from the central fringe
A laser emits a beam of light with a wavelength of 650nm which is incident upon...
A laser emits a beam of light with a wavelength of 650nm which is incident upon a double slit and produces an interference pattern 10 m away. The width of each slit is 0.1 mm and the separation of the slits is 0.5 mm. Draw in detail (i.e. to scale with a ruler) the resulting pattern you expect from -13cm to +13cm around the central maxima. Show the interference bright and dark fringes/bands that you would see, and their positions,...
A laser with wavelength d/8 is shining light on a double slit with slit separation 0.400mm...
A laser with wavelength d/8 is shining light on a double slit with slit separation 0.400mm . This results in an interference pattern on a screen a distance L away from the slits. We wish to shine a second laser, with a different wavelength, through the same slits. A) What is the wavelength ?2 of the second laser that would place its second maximum at the same location as the fourth minimum of the first laser, if d = 0.400mm...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT