Question

Ice with a mass of 52 g originally at 0.0 deg. C is added to 450...

Ice with a mass of 52 g originally at 0.0 deg. C is added to 450 g of water originally at 80. deg. C. Determine the final temperature once all the ice melts and all the water reaches thermal equilibrium. Assume that no heat is exchanged with the container.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 40-g block of ice is cooled to −72°C and is then added to 590 g...
A 40-g block of ice is cooled to −72°C and is then added to 590 g of water in an 80-g copper calorimeter at a temperature of 26°C. Determine the final temperature of the system consisting of the ice, water, and calorimeter. (If not all the ice melts, determine how much ice is left.) Remember that the ice must first warm to 0°C, melt, and then continue warming as water. (The specific heat of ice is 0.500 cal/g · °C...
A 39.2 g cube of ice, initially at 0.0 °C, is dropped into 220 g of...
A 39.2 g cube of ice, initially at 0.0 °C, is dropped into 220 g of water in an 80-g aluminum container. The water is initially at 35 °C and the aluminum container is initially at 25 °C. Remember to take in to account the melting of the ice. What is the final equilibrium temperature in °C?
A 40-g block of ice is cooled to −70°C and is then added to 570 g...
A 40-g block of ice is cooled to −70°C and is then added to 570 g of water in an 80-g copper calorimeter at a temperature of 22°C. Determine the final temperature of the system consisting of the ice, water, and calorimeter. (If not all the ice melts, determine how much ice is left.) Remember that the ice must first warm to 0°C, melt, and then continue warming as water. (The specific heat of ice is 0.500 cal/g · °C...
A 40-g block of ice is cooled to −76°C and is then added to 570 g...
A 40-g block of ice is cooled to −76°C and is then added to 570 g of water in an 80-g copper calorimeter at a temperature of 26°C. Determine the final temperature of the system consisting of the ice, water, and calorimeter. (If not all the ice melts, determine how much ice is left.) Remember that the ice must first warm to 0°C, melt, and then continue warming as water. (The specific heat of ice is 0.500 cal/g · °C...
How many grams of ice at 0.0 degress C must be added to 26.2 g of...
How many grams of ice at 0.0 degress C must be added to 26.2 g of water at 21 deg C to give a final temp in the flask of 0.5 deg C?
Ice of mass 52.5 g at -10.7° C is added to 220 g of water at...
Ice of mass 52.5 g at -10.7° C is added to 220 g of water at 15.4° C in a 110 g glass container of specific heat 0.200 cal/g-°C at an initial temperature of 25.1° C. Find the final temperature of the system.
A 1.70-kg piece of aluminum that has a temperature of −147 °C is added to 1.00...
A 1.70-kg piece of aluminum that has a temperature of −147 °C is added to 1.00 kg of water that has a temperature of 3.1 °C. At equilibrium the temperature is 0.0°C. Assuming that the heat exchanged with the container and the surroundings is negligible, determine the mass of water that has been frozen into ice.
Ice of mass 46.5 g at -10.5° C is added to 214 g of water at...
Ice of mass 46.5 g at -10.5° C is added to 214 g of water at 14.4° C in a 110 g glass container of specific heat 0.200 cal/g-°C at an initial temperature of 23.7° C. Find the final temperature of the system. °C
A quantity of ice at 0.0 °C was added to 33.6 g of water at 41.0...
A quantity of ice at 0.0 °C was added to 33.6 g of water at 41.0 °C to give water at 0.0 °C. How much ice was added? The heat of fusion of water is 6.01 kJ/mol, and the specific heat is 4.18 J/(g•°C). ______ grams
A 35.0-g cube of ice, initially at 0.0°C, is dropped into 180.0 g of water in...
A 35.0-g cube of ice, initially at 0.0°C, is dropped into 180.0 g of water in an 70.0-g aluminum container, both initially at 35.0°C. What is the final equilibrium temperature? (Specific heat for aluminum is 900 J/kg⋅°C, the specific heat of water is 4 186 J/kg⋅°C, and Lf = 3.33 × 105 J/kg.) 26.4 °C 17.6 °C 8.79 °C 35.1 °C 30.8 ° C
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT