Question

A space station in the shape of a uniform disk (mass 6.42x105 kg, radius 150 m)...

A space station in the shape of a uniform disk (mass 6.42x105 kg, radius 150 m) rotates with period 33.6 seconds. There are also 809 astronauts (whom you can treat as point particles) working inside the space station, each of mass 199 kg, and all standing on the outside rim and rotating with the station. Now, all the astronauts move to a conference room at the very center of the space station. Find the new period of the rotation of the space station.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A uniform disk of mass Mdisk = 4 kg and radius R = 0.24 mhas a...
A uniform disk of mass Mdisk = 4 kg and radius R = 0.24 mhas a small block of mass mblock = 2.2 kg on its rim. It rotates about an axis a distance d = 0.16 m from its center intersecting the disk along the radius on which the block is situated. What is the moment of inertia of the block about the rotation axis? What is the moment of inertia of the disk about the rotation axis? When...
1. A space station is essentially a uniform disk in orbit about a planet; its mass...
1. A space station is essentially a uniform disk in orbit about a planet; its mass when empty is M = 1.68x108 kg and its radius is 6.28 km. You want to create an artificial gravity so a worker on the outer edge of the disk feels an acceleration of 3 m/s2. Find the period of the station's rotation, in minutes; this is the time it takes for one complete revolution. Assume the worker's mass is negligible.
Consider a non-rotating space station in the shape of a long thin uniform rod of mass...
Consider a non-rotating space station in the shape of a long thin uniform rod of mass 6.65 x 10^6 kg and length 574 meters. Rocket motors on both ends of the rod are ignited, applying a constant force of F = 9.48 x 10^5 N to each end of the rod as shown in the diagram, causing the station to rotate about its center. If the motors are left running for 2 minutes and 21 seconds before shutting off, then...
A.) Consider a non-rotating space station in the shape of a long thin uniform rod of...
A.) Consider a non-rotating space station in the shape of a long thin uniform rod of mass 4.20 x 10^6 kg and length 953 meters. Rocket motors on both ends of the rod are ignited, applying a constant force of F = 4.40 x 10^5 N to each end of the rod as shown in the diagram, causing the station to rotate about its center. If the motors are left running for 1 minutes and 26 seconds before shutting off,...
A.) Consider a non-rotating space station in the shape of a long thin uniform rod of...
A.) Consider a non-rotating space station in the shape of a long thin uniform rod of mass 4.96 x 10^6 kg and length 530 meters. Rocket motors on both ends of the rod are ignited, applying a constant force of F = 4.99 x 10^5 N to each end of the rod as shown in the diagram, causing the station to rotate about its center. If the motors are left running for 1 minutes and 28 seconds before shutting off,...
A uniform disk of mass M and radius R is initially rotating freely about its central...
A uniform disk of mass M and radius R is initially rotating freely about its central axis with an angular speed of ω, and a piece of clay of mass m is thrown toward the rim of the disk with a velocity v, tangent to the rim of the disk as shown. The clay sticks to the rim of the disk, and the disk stops rotating. 33. What is the magnitude of the total angular momentum of the clay-disk system...
A uniform disk with radius 0.440 m and mass 32.0 kg rotates in a horizontal plane...
A uniform disk with radius 0.440 m and mass 32.0 kg rotates in a horizontal plane on a frictionless vertical axle that passes through the center of the disk. The angle through which the disk has turned varies with time according to θ(t)=( 1.00 rad/s )t+( 8.10 rad/s2 )t2 . What is the resultant linear acceleration of a point on the rim of the disk at the instant when the disk has turned through 0.300 rev ? Express your answer...
A uniform disk with radius 0.320 m and mass 32.0 kg rotates in a horizontal plane...
A uniform disk with radius 0.320 m and mass 32.0 kg rotates in a horizontal plane on a frictionless vertical axle that passes through the center of the disk. The angle through which the disk has turned varies with time according to ?(t)=( 1.00 rad/s)t+( 6.10 rad/s2 )t2 . a)What is the resultant linear acceleration of a point on the rim of the disk at the instant when the disk has turned through 0.300 rev ? Express your answer with...
A flat uniform circular disk (radius = 3.00 m, mass = 1.00 ✕ 102 kg) is...
A flat uniform circular disk (radius = 3.00 m, mass = 1.00 ✕ 102 kg) is initially stationary. The disk is free to rotate in the horizontal plane about a frictionless axis perpendicular to the center of the disk. A 50.0 kg person, standing 1.75 m from the axis, begins to run on the disk in a circular path and has a tangential speed of 2.60 m/s relative to the ground. Find the resulting angular speed of the disk (in...
This time we have a non-rotating space station in the shape of a long thin uniform...
This time we have a non-rotating space station in the shape of a long thin uniform rod of mass 1.88 x 10^6 kg and length 1447 meters. Small probes of mass 9779 kg are periodically launched in pairs from two points on the rod-shaped part of the station as shown, launching at a speed of 3576 m/s with respect to the launch points, which are each located 412 m from the center of the rod. After 17 pairs of probes...