Question

A 2.00 kg block sliding on a horizontal surface makes contact with a spring, compressing the...

A 2.00 kg block sliding on a horizontal surface makes contact with a spring, compressing
the spring (the other end of the spring is attached to a rigid wall). At the instant of
contact, the block has a speed of 12.0 m/s. The coefficients of static and kinetic friction
between the block and the surface are 0.55 and 0.35, respectively. The spring constant of
the spring is 100.0 N/m.
a) Determine the maximum compression of the spring
b) Determine the final resting place of the block with respect to the original point
of contact

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
. A block of mass 2.00 kg is attached to a horizontal spring with a force...
. A block of mass 2.00 kg is attached to a horizontal spring with a force constant of 500 N/m. The spring is stretched 5.00 cm from its equilibrium position and released from rest. Use conservation of mechanical energy to determine the speed of the block as it returns to equilibrium (a) if the surface is frictionless (b) if the coefficient of kinetic friction between the block and the surface is 0.350
You push a 3.2 kg block against a horizontal spring, compressing the spring by 16 cm....
You push a 3.2 kg block against a horizontal spring, compressing the spring by 16 cm. Then you release the block, and the spring sends it sliding across a tabletop. It stops 62 cm from where you released it. The spring constant is 170 N/m. What is the coefficient of kinetic friction between the block and the table?
You push a 4.5 kg block against a horizontal spring, compressing the spring by 26 cm....
You push a 4.5 kg block against a horizontal spring, compressing the spring by 26 cm. Then you release the block, and the spring sends it sliding across a tabletop. It stops 84 cm from where you released it. The spring constant is 280 N/m. What is the coefficient of kinetic friction between the block and the table?
A man pushes a 4.0 kg block against a horizontal spring, compressing the spring by 20...
A man pushes a 4.0 kg block against a horizontal spring, compressing the spring by 20 cm. Then the man releases the block, and the spring sends it sliding across a tabletop. It stops 90 cm from where you released it. The spring constant is 325 N/m. What is the block–table coefficient of kinetic friction? A. 0.47       B. 0.97 C. 0.57 D. 0.37
A 3.0-kg block sliding on a frictionless horizontal surface is accelerated by a compressed spring. If...
A 3.0-kg block sliding on a frictionless horizontal surface is accelerated by a compressed spring. If the 200 N/m spring is initially compressed 10 cm, determine (a) the potential energy stored in the spring. As the block leaves the spring, find (b) the kinetic energy of the block, and (c) the velocity of the block.
A 28 kg block on a horizontal surface is attached to a horizontal spring of spring...
A 28 kg block on a horizontal surface is attached to a horizontal spring of spring constant k = 4.8 kN/m. The block is pulled to the right so that the spring is stretched 7.2 cm beyond its relaxed length, and the block is then released from rest. The frictional force between the sliding block and the surface has a magnitude of 37 N. (a) What is the kinetic energy of the block when it has moved 1.6 cm from...
Another block, another spring. This time around, the block (m = 1.18 kg) is compressing a...
Another block, another spring. This time around, the block (m = 1.18 kg) is compressing a spring with spring constant k = 273 N/m by 36.3 cm. It is released from rest so it then slides along the horizontal surface shown. This time, there is friction on the horizontal surface, with a coefficient of friction between the block and surface of μk = 0.11. In addition, there is a steady wind blowing to the right, exerting a constant 6.7 N...
A 41.9-kg block of ice at 0 °C is sliding on a horizontal surface. The initial...
A 41.9-kg block of ice at 0 °C is sliding on a horizontal surface. The initial speed of the ice is 8.83 m/s and the final speed is 3.69 m/s. Assume that the part of the block that melts has a very small mass and that all the heat generated by kinetic friction goes into the block of ice, and determine the mass of ice that melts into water at 0 °C.
A 48.5-kg block of ice at 0 °C is sliding on a horizontal surface. The initial...
A 48.5-kg block of ice at 0 °C is sliding on a horizontal surface. The initial speed of the ice is 8.24 m/s and the final speed is 4.08 m/s. Assume that the part of the block that melts has a very small mass and that all the heat generated by kinetic friction goes into the block of ice, and determine the mass of ice that melts into water at 0 °C.
A block of mass m = 0.53 kg attached to a spring with force constant 119...
A block of mass m = 0.53 kg attached to a spring with force constant 119 N/m is free to move on a frictionless, horizontal surface as in the figure below. The block is released from rest after the spring is stretched a distance A = 0.13 m. (Indicate the direction with the sign of your answer. Assume that the positive direction is to the right.) The left end of a horizontal spring is attached to a vertical wall, and...