Question

Rectangular PV Cycle A piston contains 260 moles of an ideal monatomic gas that initally has...

Rectangular PV Cycle

A piston contains 260 moles of an ideal monatomic gas that initally has a pressure of 2.61 × 105 Pa and a volume of 4.9 m3. The piston is connected to a hot and cold reservoir and the gas goes through the following quasi-static cycle accepting energy from the hot reservoir and exhausting energy into the cold reservoir.

1. The pressure of the gas is increased to 5.61 × 105 Pa while maintaining a constant volume.

2. The volume of the gas is increased to 11.9 m3 while maintaining a constant pressure.

3. The pressure of the gas is decreased to 2.61 × 105 Pa while maintaining a constant volume.

4. The volume of the gas is decreased to 4.9 m3 while maintaining a constant pressure.

It may help you to recall that CV = 12.47 J/K/mole and CP = 20.79 J/K/mole for a monatomic ideal gas, and that the number of gas molecules is equal to Avagadros number (6.022 × 1023) times the number of moles of the gas.

1) How much energy is transferred into the gas from the hot reservoir?

2) How much energy is transferred out of the gas into the cold reservoir?

3) How much work is done by the gas?

4) What is the efficiency of this cycle?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A device uses a Stirling cycle on 378 moles of a monatomic ideal gas between two...
A device uses a Stirling cycle on 378 moles of a monatomic ideal gas between two reservoirs with temperatures of 389 K and 659 K as a refrigerator or a heat pump. The volume of the system shifts between 0.94 m3 and 2.44 m3. 1) How much energy does this device remove from the cold reservoir? 2)How much energy does this device transfer into the hot reservoir? 3)How much work is done by the device on the gas? 4)What is...
A closed piston-cylinder system contains a 120 moles of neon, a monatomic ideal gas, at pressure...
A closed piston-cylinder system contains a 120 moles of neon, a monatomic ideal gas, at pressure PA = 2.5 atm and volume VA = 0.80 m3. It undergoes the following cyclic process: A -> B: I There is isothermal expansion to volume double of the original. B -> C: Constant-volume process back to its original pressure . C -> A: Constant-pressure process back to its initial state a) Draw a Pressure volume diagram for the cycle. You don't need to...
The above pV diagram shows the expansion of 5.0 moles of a monatomic ideal gas from...
The above pV diagram shows the expansion of 5.0 moles of a monatomic ideal gas from state a to state b. As shown in the diagram, Pa = Pb = 600 Pa, Va = 3.0 m3, and Vb = 9.0 m3. The pressure is then reduced to 200 Pa without changing the volume, as the gas is taken from state b to state c. c. Determine Q for the process bc. d. Determine the change in thermal energy of the...
Five moles of monatomic ideal gas have initial pressure 2.50 × 103 Pa and initial volume...
Five moles of monatomic ideal gas have initial pressure 2.50 × 103 Pa and initial volume 2.10 m3. While undergoing an adiabatic expansion, the gas does 1180 J of work.​ What is the final pressure of the gas after the expansion?​ in kPa
A cylinder of monatomic ideal gas is sealed in a cylinder by a piston. Initially, the...
A cylinder of monatomic ideal gas is sealed in a cylinder by a piston. Initially, the gas occupies a volume of 3.00 L and the pressure is initially 105 kPa. The cylinder is placed in an oven that maintains the temperature at a constant value. 65.0 J of work is then done on the piston, compressing the gas (in other words, the gas does −65.0 J of work). The work is done very slowly so that the gas maintains a...
Physics_2_2.5 An ideal monatomic gas is in a vessel with the volume V1 = 1m3 under...
Physics_2_2.5 An ideal monatomic gas is in a vessel with the volume V1 = 1m3 under the pressure p1 = 2 105 Pa. The gas is first heated at a constant pressure to the Volume V2 = 3m3 and then at constant volume to the pressure p2 = 5 105 Pa. Find the amount of heat Q supplied to the gas. A clear process is highly appreciated! Thank you so much for the help!
A cylinder containing 3.0 moles of a monatomic, ideal gas begins at a pressure of   2.0...
A cylinder containing 3.0 moles of a monatomic, ideal gas begins at a pressure of   2.0 × 105 Pa, with a volume of 0.0365 m3. The gas then goes through the following three processes, which comprise a thermal cycle: The gas is expanded isothermally, to twice its original volume. The gas is cooled isobarically, back to its original volume. The gas is heated isochorically, up to its original pressure. (a) Find the initial temperature of the gas, in Kelvin. (b)...
An ideal gas goes through the following two-step process. 1) The container holding the gas has...
An ideal gas goes through the following two-step process. 1) The container holding the gas has a fixed volume of 0.240 m3 while the pressure of the gas increases from 2.00×105 Pa to 4.00×105 Pa . 2) The container holding the gas is then compressed to a volume of 0.150 m3 while maintaining a constant pressure of 4.00×105 Pa . Part A What is the total work done by the gas for this two-step process?
Three moles of a monatomic ideal gas are heated at a constant volume of 2.90 m3....
Three moles of a monatomic ideal gas are heated at a constant volume of 2.90 m3. The amount of heat added is 5.10 103 J. (a) What is the change in the temperature of the gas? _____K (b) Find the change in its internal energy. _____J (c) Determine the change in pressure. _____Pa
3. An ideal monatomic gas expands isothermally from .500 m3 to 1.25 m3 at a constant...
3. An ideal monatomic gas expands isothermally from .500 m3 to 1.25 m3 at a constant temperature of 675 K. If the initial pressure is 1.00 ∙ 105 Pa, find (a) the work done by the gas, (b) the thermal energy transfer Q, and (c) the change in the internal energy.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT