Question

Physics 207 Quiz 3 A)a ring-shaped thin wire of radius R carries a total charge Q...

Physics 207 Quiz 3

A)a ring-shaped thin wire of radius R carries a total charge Q uniformly distributed around it.find the electric field E at a point P that lies on the axis of he ring at a distance x from its center.

B) According to your formula, how much is the field at the center of the ring

C)How much is the field when x is much larger than R?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
3) A thin ring made of uniformly charged insulating material has total charge Q and radius...
3) A thin ring made of uniformly charged insulating material has total charge Q and radius R. The ring is positioned along the x-y plane of a 3d coordinate system such that the center of the ring is at the origin of the coordinate system. (a) Determine an expression for the potential at an arbitrary location along the z-axis in terms of Q, R, and z. (b) Use this expression to determine an expression for the magnitude of the electric...
Consider a thin non conducting ring of radius a, which has a charge Q uniformly spread...
Consider a thin non conducting ring of radius a, which has a charge Q uniformly spread around it. Find an expression for the electric force vector on a point charge q placed at point P, which is located on the x axis of the ring at a distance of x from the center. Verbally explain your reasoning. Let x=6 cm and Q=6 microC. Calculate the magnitude (in N) and the direction of the elctric force
A thin ring of radius R has a total charge Q distributed uniformly around it. Find...
A thin ring of radius R has a total charge Q distributed uniformly around it. Find the escaping velocity of an electron starting to move perpendicular to the centre of the ring from its centre.
A very thin wire of length L, having a total charge of Q -uniformly distributed- lies...
A very thin wire of length L, having a total charge of Q -uniformly distributed- lies along the x-axis, with it's right end at x=L/6 A: Draw a FBD B: Label all known and unknown variables. C: Set up an integral to determine the electric field at a point on the y-axis where y=10 cm. above the wire. Integral should be in terms of L,Q,H, the integration variable and physical constants. Do not evaluate the integral but instead explain your...
Total charge q2 is uniformly placed on a ring of radius R. The magnitude of the...
Total charge q2 is uniformly placed on a ring of radius R. The magnitude of the electric field at position z on the axis of the ring is given by ((kq2z)/(R^2+z^2)^(3/2)) A uniformly charged rod of total charge q1 and length L is now placed on the z axis. The nearest end of the rod is at distance L from the center of the ring, i.e. the rod extends from z = L to z = 2L (see figure on...
A ring of radius R = 1.6 m carries a charge q = 1.8 nC. Five...
A ring of radius R = 1.6 m carries a charge q = 1.8 nC. Five different points are considered along the axis of the ring (the z axis. Rank the points in terms of the magnitude of the electric field at that point. The point with the largest magnitude should be ranked first and so on. To rearrange the cases slide them up and down in the list. z = 0.63 m z = 0.19 m z = 3.34...
A thin dielectric ring, radius R has a charge distribution (lambda) = acos^2(theta), where (theta) is...
A thin dielectric ring, radius R has a charge distribution (lambda) = acos^2(theta), where (theta) is the usual polar angle and "a" is a constant with units of charge/length. The ring lies centered in the x-y plane. Find the total charge Q on the ring and the potential at the center of the ring. Now suppose the ring has a uniform charge density such that the total charge is still Q. Find the potential at the center of the ring...
2. A circular ring with a radius R of 1 cm carries a charge density of...
2. A circular ring with a radius R of 1 cm carries a charge density of ?L = R sin ? (? is an azimuthal angle) µC/cm. The ring is then placed on the xy plane with its axis the same as the z-axis. Find the electric field intensity E and the electric potential V on point A on z-axis 2 cm from the xy plane.
A thin dielectric disk with radius a has a total charge +Q distributed uniformly over its...
A thin dielectric disk with radius a has a total charge +Q distributed uniformly over its surface (Figure 1). It rotates n times per second about an axis perpendicular to the surface of the disk and passing through its center. Find the magnetic field at the center of the disk. Find the current of the rotating ring. Express your answer in terms of some or all of the variables Q, a, r, dr, n, and the constant π
A total charge Q is uniformly distributed, with surface charge density, over a very thin disk...
A total charge Q is uniformly distributed, with surface charge density, over a very thin disk of radius R. The electric field at a distance d along the disk axis is given by E where n is a normal unit vector perpendicular to the disk. What is the best approximation for the electric field magnitude E at large distances from the disk?