Question

A steady stream of water flowing in a narrow pipe reaches a point where the pipe...

A steady stream of water flowing in a narrow pipe reaches a point where the pipe widens. Does the speed of the water increase, decrease, or remain the same when the pipe widens? Explain.

Homework Answers

Answer #1

According to the equation of continuity the rate of flow of water is always constant given by

R=AV, where R= rate of flow

A=area of the cross section

V= velocity of the water.

Here as the rate is constant which means

A1v1=A2v2

So

V2=A1V1/A2.

Which means that the Velocity of the water will decrease as area is inversely proportional to the Velocity hence the answer is that the speed of the water will decrease.

If your doubt is cleared please give an upvote it means a lot. Its a humble request to you. If you have any doubts feel free to ask in comment section.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Water flowing at 40 L/s through a 9 cm diameter pipe transitions to a 3 cm...
Water flowing at 40 L/s through a 9 cm diameter pipe transitions to a 3 cm diameter pipe. What is the water pressure difference between the pipes? By what factor does the speed of the water increase moving from the larger to smaller pipe?
#23)     Water flowing at 40 L/s through a 9 cm diameter pipe transitions to a 3...
#23)     Water flowing at 40 L/s through a 9 cm diameter pipe transitions to a 3 cm diameter pipe. What is the water pressure difference between the pipes? By what factor does the speed of the water increase moving from the larger to smaller pipe?
Water moves through a constricted pipe in steady, ideal flow. At the lower point shown in...
Water moves through a constricted pipe in steady, ideal flow. At the lower point shown in the figure below, the pressure is 1.80 ? 105 Pa and the pipe radius is 2.60 cm. At the higher point located at y = 2.50 m, the pressure is 1.26 ? 105 Pa and the pipe radius is 1.30 cm. a) Find speed of flow in lower section. b) Find the speed of flow in the upper section. c) Find the volume flow...
Water moves through a constricted pipe in steady, ideal flow. At the lower point shown in...
Water moves through a constricted pipe in steady, ideal flow. At the lower point shown in the figure below, the pressure is 1.85 ✕ 105 Pa and the pipe radius is 2.50 cm. At the higher point located at y = 2.50 m, the pressure is 1.26 ✕ 105 Pa and the pipe radius is 1.70 cm. (a) Find the speed of flow in the lower section. (b) Find the speed of flow in the upper section. (c) Find the...
Water is flowing at 5.00 m/s in a pipe where the cross section is 4.00 cm2...
Water is flowing at 5.00 m/s in a pipe where the cross section is 4.00 cm2 and the pressure is 1.5 x 105 Pa. If the area gradually becomes 8.00 cm2 at a point 10.0 m below the first point, find the pressure at the second point.
Water moves through a constricted pipe in steady, ideal flow. At the lower point shown in...
Water moves through a constricted pipe in steady, ideal flow. At the lower point shown in the figure below, the pressure is P1 = 1.70  104 Pa, and the pipe diameter is 4.0 cm. At another point y = 0.30 m higher, the pressure is P2 = 1.25  104 Pa and the pipe diameter is 2.00 cm. (a) Find the speed of flow in the lower section. (b) Find the speed of flow in the upper section. (c) Find the volume flow...
Water moves through a constricted pipe in steady, ideal flow. At the lower point shown in...
Water moves through a constricted pipe in steady, ideal flow. At the lower point shown in the figure below, the pressure is P1= 2.00  104 Pa, and the pipe diameter is 5.0 cm. At another point y = 0.40 m higher, the pressure is P2 = 1.25  104 Pa and the pipe diameter is 2.50 cm. A) find the speed of flow in the lower section in m/s B) find the speed of flow in the upper section in m/s C) Find...
Water moves through a constricted pipe in steady, ideal flow. At the lower point shown in...
Water moves through a constricted pipe in steady, ideal flow. At the lower point shown in the figure below, the pressure is P1 = 1.70 104 Pa, and the pipe diameter is 4.0 cm. At another point y = 0.30 m higher, the pressure is P2 = 1.30 104 Pa and the pipe diameter is 2.00 cm. (a) Find the speed of flow in the lower section. =m/s b) Find the speed of flow in the upper section. =m/s (c)...
Water moves through a constricted pipe in steady, ideal flow. At the lower point shown in...
Water moves through a constricted pipe in steady, ideal flow. At the lower point shown in the figure below, the pressure is P1 = 1.80  104 Pa, and the pipe diameter is 8.0 cm. At another point y = 0.20 m higher, the pressure is P2 = 1.15  104 Pa and the pipe diameter is 4.00 cm. (a) Find the speed of flow in the lower section. m/s (b) Find the speed of flow in the upper section. m/s (c) Find the...
Assume that water flowing through a pipe with a circular cross section flows most rapidly at...
Assume that water flowing through a pipe with a circular cross section flows most rapidly at the center of the pipe and least rapidly near the pipe walls (this might be reasonable because of friction between the water and the pipe walls). Assume that the water speed at the walls is half as great as the speed at the center, and assume that the decrease is linear (i.e. the graph of water speed versus radius is a straight line). If...