Question

A flea walking along a ruler moves from the 45 cm mark to the 27 cm...

A flea walking along a ruler moves from the 45 cm mark to the 27 cm mark. It does this in 3 seconds. What is the speed? What is the velocity?

(Define increasing numbers to be the positive direction and decreasing numbers to be the negative direction.)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A proton moves along the x axis according to the equation x = 50t + 10t2,...
A proton moves along the x axis according to the equation x = 50t + 10t2, where x is in meters and t is in seconds. For the time range, -8 s ≤ t ≤ 4s, answer the questions below. Show all work and explain your answers. a) Estimate the fathest distance this proton could move in the negative direction of the x axis. What is the velocity at the moment? b) In this time range, find out when the...
While a person is walking, his arms (with typical lengths 70 cm measured from the shoulder...
While a person is walking, his arms (with typical lengths 70 cm measured from the shoulder joint) swing through approximately a 45? angle in 0.5 s. As a reasonable approximation, we can assume that the arm moves with constant speed during each swing. Find the magnitude of the force that the blood vessel must exert on the drop of blood (In N). Find the direction of the force that the blood vessel must exert on the drop of blood. What...
A beam of protons (proton mass is 1.67 x 10 -​ 27 kg) moves at 3...
A beam of protons (proton mass is 1.67 x 10 -​ 27 kg) moves at 3 x 10 5​ m/s through a uniform magnetic field with magnitude 2 T. The magnetic field has exactly equal components along the positive ​y and negative ​x axes and no component along the ​z axis. The velocity of each proton lies in the ​xz-​ plane at an angle of 30 0​ ​to the​ z-​ axis. (a) Write the magnetic field ​B and the velocity...
A particle's position is given by x = 7.00 - 15.00t + 3t2, in which x...
A particle's position is given by x = 7.00 - 15.00t + 3t2, in which x is in meters and t is in seconds. (a) What is its velocity at t = 1 s? (b) Is it moving in the positive or negative direction of x just then? (c) What is its speed just then? (d) Is the speed increasing or decreasing just then? (Try answering the next two questions without further calculation.) (e) Is there ever an instant when...
A particle's position is given by x = 12.0 - 9.00t + 3t2, in which x...
A particle's position is given by x = 12.0 - 9.00t + 3t2, in which x is in meters and t is in seconds. (a) What is its velocity at t = 1 s? (b) Is it moving in the positive or negative direction of x just then? (c) What is its speed just then? (d) Is the speed increasing or decreasing just then? (Try answering the next two questions without further calculation.) (e) Is there ever an instant when...
1)A particle moves along the x axis. Its position is given by the equation x =...
1)A particle moves along the x axis. Its position is given by the equation x = 1.8 + 2.5t − 3.9t2 with x in meters and t in seconds. (a) Determine its position when it changes direction. (b) Determine its velocity when it returns to the position it had at t = 0? (Indicate the direction of the velocity with the sign of your answer.) 2)The height of a helicopter above the ground is given by h = 3.10t3, where...
3.   A     particle     moves     along     the     x-­‐axis     according     to    &nbsp
3.   A     particle     moves     along     the     x-­‐axis     according     to     the     function     x=     7.0t4     +     3.5t3,     where     x     is     in     meters      and     t     in     seconds.     (8     marks)      3.1 Calculate     the     displacement     of     the     particle     from     time     t     =     0s     to     t     =     2s     of     its     motion.     (1     mark)      3.2 Calculate     the     average     velocity     of     the     particle     from     time     t     =     0s     to     t     =     2s     of     its     motion.     (1     mark)     3.3 Calculate     the     instantaneous     velocities     of     the     particle     at     t=3.0s  ...
While a person is walking, his arms (with typical lengths 70 cm measured from the shoulder...
While a person is walking, his arms (with typical lengths 70 cm measured from the shoulder joint) swing through approximately a 45 angle in 0.5 s. As a reasonable approximation, we can assume that the arm moves with constant speed during each swing. a. Find the magnitude of the force that the blood vessel must exert on the drop of blood. Express your answer using two significant figures. b. What force would the blood vessel exert if the arm were...
PLEASE ANSWER BOTH QUESTIONS! (1) A 2.4 kg particle moves along an x axis, being propelled...
PLEASE ANSWER BOTH QUESTIONS! (1) A 2.4 kg particle moves along an x axis, being propelled by a variable force directed along that axis. Its position is given by x = 3.0 m + (4.0 m/s)t + ct2 - (1.8 m/s3)t3, with x in meters and t in seconds. The factor c is a constant. At t = 3.0 s, the force on the particle has a magnitude of 36 N and is in the negative direction of the axis....
An object of mass m moves along a guided horizontal path with a speed given by...
An object of mass m moves along a guided horizontal path with a speed given by v = vo + vasin(ωt) where t = time in seconds. The constants are … vo = 5 m/sec va = 3 m/sec ω = π/4 rad/sec (Recall rad/sec = 1/sec) m = 5 kg Find functions for the position, acceleration, and force required to cause this acceleration as functions of time. At time t = 0 … position xo = 0 Does someone...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT