Question

A 1 kg block of wood is attached to a spring, of force constant 200 N/m,...

A 1 kg block of wood is attached to a spring, of force constant 200 N/m, which is attached to an immovable support. The block rests on a frictional surface with a coefficient of kinetic friction of 0.2. A 20 g bullet is fired into the block horizontally compressing the spring a maximum distance of 15 cm. Find the original velocity of the bullet before the collision.

Homework Answers

Answer #1

you can comment below for any further queries. Please provide positive feedback.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A pellet gun fires into a stationary block of wood that is attached to a spring...
A pellet gun fires into a stationary block of wood that is attached to a spring on a frictionless surface. When the bullet enters the wood, it remains inside, and the bullet and the block enter into simple harmonic motion with amplitude = 11.0 cm. The bullet (m = 5 grams) was initially traveling at 650 m/s before hitting the block of wood (m = 2.5 kg). a) What is the spring constant of the spring? b) What is the...
1. A 20 kg block is attached to a very light horizontal spring of force constant...
1. A 20 kg block is attached to a very light horizontal spring of force constant 500 N/m and is resting on a frictionless horizontal table. Suddenly it is struck by a 3kg stone travelling horizontally to the right at 8m/s, whereupon the stone rebounds at 2m/s horizontally to the left. Find the maximum distance that the block will compress the spring after collision. Draw two diagrams: one for the collision and one for energy. 2. A rifle of mass...
A 13.1-g bullet is fired into a block of wood at 245 m/s. The block is...
A 13.1-g bullet is fired into a block of wood at 245 m/s. The block is attached to a spring that has a spring constant of 205 N/m. The block and bullet continue to move, compressing the spring by 35.0 cm before the whole system momentarily comes to a stop. Assuming that the surface on which the block is resting is frictionless, determine the mass of the wooden block.
A 172 g block is launched by compressing a spring of constant k=200N/m a distance of...
A 172 g block is launched by compressing a spring of constant k=200N/m a distance of 15 cm. The spring is mounted horizontally, and the surface directly under it is frictionless. But beyond the equilibrium position of the spring end, the surface has coefficient of friction μ=0.27. This frictional surface extends 85 cm, followed by a frictionless curved rise, as shown in the figure After launch, where does the block finally come to rest? Measure from the left end of...
A 1.42 kg block is attached to a horizontal spring with spring constant 3100 N/m ....
A 1.42 kg block is attached to a horizontal spring with spring constant 3100 N/m . The block is at rest on a frictionless surface. A 8.40 g bullet is fired into the block, in the face opposite the spring, and sticks. Part A What was the bullet's speed if the subsequent oscillations have an amplitude of 14.3 cm ?
A 200 g block attached to a spring with spring constant 2.5 N/m oscillates horizontally on...
A 200 g block attached to a spring with spring constant 2.5 N/m oscillates horizontally on a frictionless table. Its velocity is 15 cm/s when x0 = -5.6 cm . a. What is the amplitude of oscillation? b. What is the block's maximum acceleration? c. What is the block's position when the acceleration is maximum? d. What is the speed of the block when x1x1x_1 = 3.0 cm ?
A bullet with a mass ?b=12.7 g is fired into a block of wood at velocity...
A bullet with a mass ?b=12.7 g is fired into a block of wood at velocity ?b=261 m/s. The block is attached to a spring that has a spring constant ? of 205 N/m. The block and bullet continue to move, compressing the spring by 35.0 cm before the whole system momentarily comes to a stop. Assuming that the surface on which the block is resting is frictionless, determine the mass of the wooden block.
A bullet with a mass m_b=11.5 g is fired into a block of wood at velocity...
A bullet with a mass m_b=11.5 g is fired into a block of wood at velocity v_b=265 m/s. The block is attached to a spring that has spring constant k of 205 N/m. The block and bullet continue to move, compressing the spring by 35.0 cm before the whole system momentarily comes to a stop. Assuming that the surface on which the block is resting is frictionless, determine the mass of the wooden block.
A bullet with a mass ?b=12.3 g is fired into a block of wood at velocity...
A bullet with a mass ?b=12.3 g is fired into a block of wood at velocity ?b=261 m/s. The block is attached to a spring that has a spring constant ? of 205 N/m. The block and bullet continue to move, compressing the spring by 35.0 cm before the whole system momentarily comes to a stop. Assuming that the surface on which the block is resting is frictionless, determine the mass of the wooden block.
. A block of mass 2.00 kg is attached to a horizontal spring with a force...
. A block of mass 2.00 kg is attached to a horizontal spring with a force constant of 500 N/m. The spring is stretched 5.00 cm from its equilibrium position and released from rest. Use conservation of mechanical energy to determine the speed of the block as it returns to equilibrium (a) if the surface is frictionless (b) if the coefficient of kinetic friction between the block and the surface is 0.350