Question

An object is moving in the z direction as z(t) = (13.2 cm) cos[(3.14 rad/s)t -...

An object is moving in the z direction as z(t) = (13.2 cm) cos[(3.14 rad/s)t - 1.57]. The object weighs 21.2 N on Earth.

What is the total kinetic plus potential energy of the object?

The mass is under the influence of a spring. What is its spring constant?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1. An object-spring system moving with simple harmonic motion (SHM) has an amplitude A. (a) What...
1. An object-spring system moving with simple harmonic motion (SHM) has an amplitude A. (a) What is the total energy of the system in terms of k and A only? (b) Suppose at a certain instant the kinetic energy is twice the elastic potential energy, KE = 2PE. Re-write this equation by using only the variables for the mass, m, velocity, v, spring constant, k, and position, x. (c) Using the results of (a) and (b) and conservation of energy,...
A 2kg object is moving at 3 m/s. A 4 N force is applied in the...
A 2kg object is moving at 3 m/s. A 4 N force is applied in the direction of motion and then removed after the object has traveled an additional 5 m/s. What is initial kinetic energy of the object. What is the final kinetic energy? What is the final speed of the object?
1) The position of a particle is given in cm by x = (4) cos 3πt,...
1) The position of a particle is given in cm by x = (4) cos 3πt, where t is in seconds. (a) Find the maximum speed.    m/s (b) Find the maximum acceleration of the particle. m/s2 2) An object of mass m is suspended from a vertical spring of force constant 1692 N/m. When the object is pulled down 2.51 cm from equilibrium and released from rest, the object oscillates at 5.10 Hz. Write expressions for the acceleration ax...
An object of mass of 2.7 kg is attached to a spring with a force constant...
An object of mass of 2.7 kg is attached to a spring with a force constant of k = 280 N/m. At t = 0, the object is observed to be 2.0 cm from its equilibrium position with a speed of 55 cm/s in the -x direction. The object undergoes simple harmonic motion “back and forth motion” without any loss of energy. (a) Sketch a diagram labeling all forces on the object and calculate the maximum displacement from equilibrium of...
A 0.400-kg object attached to a spring with a force constant of 8.00 N/m vibrates in...
A 0.400-kg object attached to a spring with a force constant of 8.00 N/m vibrates in simple harmonic motion with an amplitude of 12.2 cm. the maximum value of its speed is 54.6 WHAT IS THE MAXIMUM VALUE OF IT'S ACCELERATION? QUESTION 2 A 45.0-g object connected to a spring with a force constant of 40.0 N/m oscillates with an amplitude of 7.00 cm on a frictionless, horizontal surface. the total energy of the system is 98 the speed of...
A small object with mass 4.10 kg moves counterclockwise with constant speed 1.35 rad/s in a...
A small object with mass 4.10 kg moves counterclockwise with constant speed 1.35 rad/s in a circle of radius 3.05 m centered at the origin. It starts at the point with position vector 3.05î m. Then it undergoes an angular displacement of 8.65 rad. (a) What is its new position vector? m (b) In what quadrant is the particle located and what angle does its position vector make with the positive x-axis? Second  at ??° (c) What is its velocity? m/s...
A 50.0-g object connected to a spring with a force constant of 100.0 N/m oscillates on...
A 50.0-g object connected to a spring with a force constant of 100.0 N/m oscillates on a horizontal frictionless surface with an amplitude of 8.00 cm. a) What is the period (in seconds) and frequency of its motion? b) Assuming that the object's equilibrium position (i.e. when the spring is unstretched) is designated as x = 0, and that at t = 0 the object is located at maximum amplitude, x(t) = A cos (ωt), describes the motion. What is...
Edit question An object with mass 0.220 kg is acted on by an elastic restoring force...
Edit question An object with mass 0.220 kg is acted on by an elastic restoring force with force constant 10.5 N/m. The object is set into oscillation with an initial potential energy of 0.150 J and an initial kinetic energy of 5.60×10−2 J. From the problem (a), (b), and (c) I got Amplitude 0.198m Potential energy when the displacement was at half 5.15*10^-2 J Displacement when Potential energy and Kinetic energies are equal 0.140m And I don't know (d) What...
A) A mass on a spring vibrates in simple harmonic motion at a frequency of 4.0...
A) A mass on a spring vibrates in simple harmonic motion at a frequency of 4.0 Hz and an amplitude of 8.0 cm. If a timer is started when its displacement from equilibrium is a maximum (hence x = 8 cm when t = 0), what is the displacement of the mass when t = 3.7 s? B) A mass of 4.0 kg, resting on a horizontal, frictionless surface, is attached on the right to a horizontal spring with spring...
A particle with charge -5.60 nC is moving in a uniform magnetic field B=-(1.25 T)z (z-direction)....
A particle with charge -5.60 nC is moving in a uniform magnetic field B=-(1.25 T)z (z-direction). The magnetic force on the particle is measured to be ?? = ?(3.40 × 10?7 N)??? + (7.40 × 10?7 N)???. (a) Calculate all the components of the velocity of the particle that you can from this information. (b) Are there components of the velocity that are not determined by the measurement of the force? Explain your answer. (c) Calculate the scalar product of...