Question

19. (a) A freezer maintains an interior temperature inside of −16.0°C and has a coefficient of...

19.

(a)

A freezer maintains an interior temperature inside of −16.0°C and has a coefficient of performance of 3.00. The freezer sits in a room with a temperature of 15.0°C. The freezer is able to completely convert 28.0 g of liquid water at 15.0°C to ice at −16.0°C in one minute. What input power (in watts) does the freezer require? (The specific heat of liquid water is 4.186 J/(g · °C), the specific heat of ice is 2.090 J/(g · °C), and the latent heat of fusion of water is 334 J/g.)

(Answer in Watts)

(b)

What If? In reality, only part of the power consumption of a freezer is used to make ice. The remainder is used to maintain the temperature of the rest of the freezer. Suppose, however, that 100% of a freezer's typical power consumption of 160 W is available to make ice. The freezer has the same coefficient of performance as given above. How many grams per minute of water at 15.0°C could this freezer convert to ice at −16.0°C?

(Answer in g/min)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A freezer maintains an interior temperature inside of −28.0°C and has a coefficient of performance of...
A freezer maintains an interior temperature inside of −28.0°C and has a coefficient of performance of 3.00. The freezer sits in a room with a temperature of 15.0°C. The freezer is able to completely convert 20.0 g of liquid water at 15.0°C to ice at −28.0°C in one minute. What input power (in watts) does the freezer require? (The specific heat of liquid water is 4.186 J/(g · °C),the specific heat of ice is 2.090 J/(g · °C), and the...
a) A freezer maintains an interior temperature inside of −12.0°C and has a coefficient of performance...
a) A freezer maintains an interior temperature inside of −12.0°C and has a coefficient of performance of 3.00. The freezer sits in a room with a temperature of 25.0°C. The freezer is able to completely convert 28.0 g of liquid water at 25.0°C to ice at −12.0°C in one minute. What input power (in watts) does the freezer require? (The specific heat of liquid water is 4.186 J/(g · °C), the specific heat of ice is 2.090 J/(g · °C),...
(a) A freezer maintains an interior temperature inside of −18.0°C and has a coefficient of performance...
(a) A freezer maintains an interior temperature inside of −18.0°C and has a coefficient of performance of 3.00. The freezer sits in a room with a temperature of 18.0°C. The freezer is able to completely convert 34.0 g of liquid water at 18.0°C to ice at −18.0°C in one minute. What input power (in watts) does the freezer require? (The specific heat of liquid water is 4.186 J/(g · °C), the specific heat of ice is 2.090 J/(g · °C),...
500g of water at temperature of 15°C is placed in a freezer. The freezer has a...
500g of water at temperature of 15°C is placed in a freezer. The freezer has a power rating of 100W and is 80% efficient. 1- Calculate the energy required to convert the water into ice at a temperature of -20°C. 2- How much energy is removed every second from the air in the freezer? 3- How long will it take the water to reach a temperature of -20°C? 4- Explain the process that cools the air in the freezer. 5-...
A container with 59 g of water at 23oC is placed in a freezer. How much...
A container with 59 g of water at 23oC is placed in a freezer. How much heat must be removed from the water to turn it to ice at –9 oC? Ignore the heat capacity of the container. Give your answer in kilo-joules (kJ) with 3 significant figures. Specific heat of ice: 2.090 J/g K Specific heat of water: 4.186 J/g K Latent heat of fusion for water: 333 J/g
1. You need design a freezer that will keep the temperature inside a -5.0 C and...
1. You need design a freezer that will keep the temperature inside a -5.0 C and will operate with a temperature inside at 5.0 C and will operate in a room with a temperature of 22.0 C. The freezer is to make 20.0 kg of ice at 0.0 C starting with water at 20.0 C. For water, the specific heat is 4190 J/kg-K, the heat of fusion is 333 kj/kg. a. How much energy must be removed from the water...
A freezer has a coefficient of performance of 2.60. The freezer is to convert 1.86 kg...
A freezer has a coefficient of performance of 2.60. The freezer is to convert 1.86 kg of water at 26.0 ∘C to 1.86 kg of ice at -5.00 ∘C in 1 hour. a) What amount of heat must be removed from the water at 26.0 ∘C to convert it to ice at -5.00 ∘C ? b) How much electrical energy is consumed by the freezer during this hour? c) How much wasted heat is rejected to the room in which...
A (18) g ice cube at –15.0°C is placed in (126) g of water at 48.0...
A (18) g ice cube at –15.0°C is placed in (126) g of water at 48.0 degreesC. Find the final temperature of the system when equilibrium is reached. Ignore the heat capacity of the container and assume this is in a calorimeter, i.e. the system is thermally insulated from the surroundings. Give your answer in degreesC with 3 significant figures. Specific heat of ice: 2.090 J/(g∙ oC) Specific heat of water: 4.186 J/(g∙ oC) Latent heat of fusion for water:...
Let A be the last two digits, let B be the last digit, and let C...
Let A be the last two digits, let B be the last digit, and let C be the sum of the last three digits of your 8-digit student ID. Example: for 20245347, A = 47, B = 7, and C = 14. A container with (15.0 + A) g of water at (8.0 + C) oC is placed in a freezer. How much heat must be removed from the water to turn it to ice at –(5.0 + B) oC?...
How much heat is required to convert solid ice with a mass of 760 g at...
How much heat is required to convert solid ice with a mass of 760 g at a temperature of -16.0 °C to liquid water at a temperature of 76.5 °C? The specific heat of ice is cice = 2100 J/kgK, the specific heat of water is cwater = 4186.8 J/kgK, and the heat of fusion for water is Lf = 334 kJ/kg.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT