Question

Blocks A (mass 3.5 kg) and B (mass 5.5 kg) move on a frictionless, horizontal surface....

Blocks A (mass 3.5 kg) and B (mass 5.5 kg) move on a frictionless, horizontal surface. Initially, block B is at rest and block A is moving toward it at 2.0 m/s. The blocks are equipped with ideal spring bumpers (as in Example 8.10, Section 8.4). The collision is head-on, so all motion before and after the collision is along a straight line.

(a) Find the maximum energy stored in the spring bumpers, in Joules.

(b) Find the velocity of each block at that time (the time of maximum stored energy in the bumpers), in m/s.

(c) Find the velocity of block A after they have moved apart, in m/s. Let the positive direction be that of Block A before the collision. Note that this value will have a sign and can be positive or negative.

(d) Find the velocity of block B after they have moved apart, in m/s. Let the positive direction be that of Block A before the collision. Note that this value will have a sign and can be positive or negative.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Blocks A (mass 5.00 kg) and B (mass 7.00 kg) move on a frictionless, horizontal surface....
Blocks A (mass 5.00 kg) and B (mass 7.00 kg) move on a frictionless, horizontal surface. Initially, block B is at rest and block A is moving toward it at 4.00 m/s. The blocks are equipped with ideal spring bumpers. The collision is head-on, so all motion before and after the collision is along a straight line. Let +x be the direction of the initial motion of block A. Find the maximum energy stored in the spring bumpers. Find the...
Blocks A (mass 5.50 kg ) and B (mass 13.00 kg ) move on a frictionless,...
Blocks A (mass 5.50 kg ) and B (mass 13.00 kg ) move on a frictionless, horizontal surface. Initially, block B is at rest and block A is moving toward it at 3.00 m/s . The blocks are equipped with ideal spring bumpers. The collision is head-on, so all motion before and after the collision is along a straight line. Let +x be the direction of the initial motion of A. Part A: Find the maximum energy stored in the...
A 2.00 kg block slides on a frictionless, horizontal surface with a speed of 5.10 m/s,...
A 2.00 kg block slides on a frictionless, horizontal surface with a speed of 5.10 m/s, until colliding head-on with, and sticking to, a 1.00 kg block at rest. A) Find the speed of the combination after the collision. B) The two blocks continue to slide together until coming in contact with a horizontal spring and eventually brought to rest. If the blocks compress the spring 10.0 cm, find the spring constant of the spring. C) How much work did...
Two blocks of masses m1 = 1.50 kg and m2 = 3.00 kg are each released...
Two blocks of masses m1 = 1.50 kg and m2 = 3.00 kg are each released from rest at a height of h = 4.40 m on a frictionless track, as shown in the figure below, and undergo an elastic head-on collision. (Let the positive direction point to the right. Indicate the direction with the sign of your answer.) (a) Determine the velocity of each block just before the collision. (b) Determine the velocity of each block immediately after the...
Two blocks with masses 3.0 kg and 5.0 kg are placed on a horizontal frictionless surface....
Two blocks with masses 3.0 kg and 5.0 kg are placed on a horizontal frictionless surface. A light spring is placed in a horizontal position between the blocks. The blocks are pushed together, compressing the spring, and then released from rest. After contact with the spring ends, the 5.0-kg mass has a speed of 2.0 m/s. How much potential energy was stored in the spring when the blocks were released?
Two blocks are held together, with a compressed spring between them, on a horizontal frictionless surface....
Two blocks are held together, with a compressed spring between them, on a horizontal frictionless surface. When the system is released, the spring pushes the blocks apart and they then move off in opposite directions. The spring remains behind, and you can assume that all of its energy is transformed to the kinetic energy of the blocks. Find the kinetic energy of block A HomeworkUnanswered The mass of block A is 3.00 times the mass of block B, and the...
A block of mass 9.1 kg rests on a horizontal frictionless floor, and is connected to...
A block of mass 9.1 kg rests on a horizontal frictionless floor, and is connected to a vertical wall by a spring of force constant 205 N/mN/m as shown in the figure. When the spring is in its equilibrium position (neither stretched nor compressed), the block just touches a second lighter block of mass 3.4 kg at rest on the frictionless floor. The spring is now compressed by 0.12 mm (only the heavier mass is moved towards the wall) and...
A wooden block is at rest on a frictionless horizontal surface and is connected to a...
A wooden block is at rest on a frictionless horizontal surface and is connected to a spring (k =150 N/m). The mass of the wooden block is 0.10 kg. A bullet (mass 0.012 kg) and velocity 270 m/s is fired horizontally into the wooden block. After collision the bullet stays in the block. (a) Find the speed of the bullet-block system right after the collision. (b) If the bullet-block system compresses the spring by a maximum of d. Find d
Block 2 with mass m2=5.0 kg is at rest on a frictionless surface and connected to...
Block 2 with mass m2=5.0 kg is at rest on a frictionless surface and connected to a spring constant k=64.0 N/m. The other end of the spring is connected to a wall, and the spring is initially at its equilibrium (unstretched) position. Block 1 with mass m1=10.0 is initially traveling with speed v1=4.0 m/s and collides with block 2. The collision is instantaneous, and the blocks stick together after the collision. Find the speed of the blocks immediately after the...
Mass A (8.5 kg) slides across a frictionless surface with a velocity of 6 m/s in...
Mass A (8.5 kg) slides across a frictionless surface with a velocity of 6 m/s in the positive direction. Mass B (8.5 kg) slides across the same surface in the opposite direction with a velocity of ?12 m/s. The two objects collide and stick together after the collision. Calculate the center-of-mass velocity (in m/s) of the system both before and after the collision. (Indicate the direction with the sign of your answer.)